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V.

Preface.

Since we have already given a general outline of the aim and

scope of these notes in the preface to Several Complex Variable8 and

Cc*nplex Manifolds I, we shall do no more here than provide a brief

description of the contents of this volume together with a few notes

of guidance to the reader.

Chapter 5 of the present notes is devoted to calculus on

complex manifolds. The first four sections cover basic linear algebra

and calculus on a differential manifold. Most of the material in

these sections should be familiar (though perhaps not the notation) and

I would suggest reading through them quickly, referring back to them

later, if necessary, for specific results and notation. The next

three sections lead up to the construction of the 3—operator on an

arbitrary complex manifold and also describe the 3—operator for

holomorphic bundle valued forms. In 8ection 8 we prove the Dolbeault—

Crothendieck lemma and solve the Cousin problems for polydisca in

In section 9 we show how holomorphic vector bundles naturally enter

into the study of compact complex manifolds. We discuss, for example,

the Euler sequence for projective space; the geometric genus; theta

functions for complex tori. Finally in section 10, we discuss various

pseudoconvexivity conditions for non—compact complex manifolds.

Chapter 6 is a self—contained introduction to the theory of

sheaves in complex analysis. Section 1 is devoted to sheaves and

presheaves with many examples: In section 2 we show how sheaf theory

can be used to construct the envelope of holomorphy of a domain

spread in This section is not used el8ewhere in the text and may

be omitted at first reading. In section 3 we define sheaf cohomology

using fine resolutiona. After proving Leray's theorem, we go on to

define cohoniology and prove that it is naturally isomorphic to

cohomology computed using fine resolutions. There are many important

illustrations of sheaf cohomology arguments in this section. For

example: The de Rham isomorphism between singular and de Rham

cohomology; The Dolbeault isomorphism theorem; the first Chern class

and classification of complex line bundles.

In Chapter 7 we prove a number of foundational results in the

theory of complex manifolds. In section 1 we define coherence and

prove Oka's theorem on the coherence of the sheaf of relations. In
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section 2 we prove Cartan's theorems A and B granted the exactness of

the s—sequence for locally free sheaves (A proof of this result will

be included in the projected part III of these notes; proofs may also

be found in &rmander [1] or Vesentini [1]). In section 3 we prove the

finiteness theorem of Cartan and Serre and in section 4 the finiteness

theorem of Grauert. In section 5 we prove Serre's theorems A and B and

give a number of applications. In section 6 we prove Grauert's

vanishing theorem and, following Crauert, show how it may be used to

prove the Kodaira embedding theorem.
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CHAPTER 5. CALCULUS ON COMPLEX MANIFOLDS

Introduction.

In sections 1 and 2 we cover basic linear algebra and calculus

on differential manifolds. We define the coisplexification of a real

vector space in section 3 and in section 4 we develop the main results

of complex linear algebra that we need In the sequel. After giving

some general facts about complex and holomorphic vector bundles in

section 5 and constructing the tangent and cotangent bundles of a

complex manifold in section 6 we reach the heart of the chapter in

section 7 with the construction of the s—operator on an arbitrary

complex manifold. In section 8 we prove the Dolbeault—Crothendieck

Lemma and, with a little more effort, deduce that the Cousin I and II

problems are always solvable on polydiscs. Section 9 is devoted to

the discussion of a number of important examples on compact complex

manifolds. Thus we construct the Euler sequence for projective space,

prove some basic results about linear systems and their relationship

with holomorphic line bundles and conclude with a discussion of theta

functions and complex tori. Finally, in section 10, we define the

concepts of q—pseudoconvexivity, q—completeness and weakly positive

vector bundles.

§1. Review of linear algebra

In this section we shall review some elementary linear algebra

that does not depend on the assumption of an inner product structure.

We shall generally omit proofs (usually simple) referring the reader

to any one of the many texts in linear algebra. All vector spaces in

this section will be assumed real and finite dimensional.

Definition 5.1.1. A graded vector space E is a collection

of vector spaces indexed by the positive integers. We

write E (E01E1,. ..} and set En We call E0 the nth. component

of E. A morphism T:E —--+F, of degree r � 0, of graded vector spaces

is a collection of linear maps T1: Ei + Fj+ indexed by the positive

integers.
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Examples.

1. Associated to the vector space E we may define the graded vector

AE andOE whose nth. components are respectively Ø°E,

and Ø°E (nth. tensor, exterior and symmetric powers of E respectively).

2. A linear map T: E + F induces degree zero morphisnis

•T: —s*F, AT: AE —*AF, OT: OE whose nth. components
.n n n

are T, A T and 0 T respectively.

Definition 5.1.2. Let E and F be graded vector spaces. Then

1. The direct awn of E and F is the graded vector space E•F whose

nth. component is En Fn•

2. The tenaor product of E and F is the graded vector space E•F

whose nth. component is Er F5.

DefinitIon 5.1.3. A graded vector apace algebra consists of a

graded vector space E together with a morphism of degree zero

—--sE, written — AZ, satisfying the following

properties

1. The multiplication defined by 4, is associative.

2. There exists a unit element in E for the multiplication.

The algebra is said to be consnutative if AZ — A B Eq•

Remark. The universal factorization property for the tensor

product implies that we may equivalently suppose that 4, is a bilinear

map on E x E.

Example 3. Given a vector space E,GE, AE andOE are graded

vector space algebras with respective algebra operations of tensor

product, exterior or wedge product and symmetric product. AE is

commutative.

Proposition 5.1.4. Let E and F be vector spaces. Then

AE•AF has the natural structure of a commutative graded algebra with

wedge product defined by
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(XGY) A (X' GY') •

where X e AE, Y X' Y' AF.

Proof. We remark only that in all results of this type it is

enough to define the operation or map on a set of generators for the

algebra. 0

Before stating the next result we remark that we say a morphism

of graded vector spaces is an iaoniorphiem if it is invertible and of

degree zero. An isomorphism of graded vector space algebras will, in

addition, preserve the algebra structures.

Theorem 5.1.5. If E and F are vector spaces we have a

canonical isomorphism of commutative graded algebras

A(EGF) cSAE®AF

In particular,

p � 0.
r+sp

Proof. For r,s ? Owe define i : +A(E.F))+ by

3jr
(e1 A ... A5 •f1A ... Af) (e1+O) A ... A (e+O) A(f1+O) A ... A

where e1 E, 1 � i � r, F, 1 � j � a, and the wedge product on

the right hand side of the above relation is taken in We

leave it to the reader to verify that the maps
1•1r

define the required

morphism. U

Given a vector space E it is possible to identifvAE andOE with

graded subspaces (not subalgebras) of ®E and we now indicate how to do

this in the case of exterior powers of E. Fix a positive integer p and

let denote the symmetric group on p symbols. We define a

representation T: -* GL(&'E) of by

—

where ej E, 1 � J � P' G Let denote the fixed point

set of the corresponding action of on Elements of



4.

are called alternating tensors of order p. The map A: &'E

defined by mapping e1 induces a linear

isomorphism of with APE. To see this observe that we have a

projection map Alt: defined by

Alt(e1®... ee) T(a)(e1e... ee).
a€sp

Clearly Kernel(Alt) Kernel(A)and so

Remark. Under the identification of with given by

this isomorphism we see that

e1A... Ac
—

siSn(C)e0(1)a...

Let E' denote the dual space of E and

>: E XE' + 1K denote the dual pairing between E and E'. For p � 0,

we have dual pairings &'E X + 1K, /YExA"E' 1K respectively

defined by

A••• A •.. —

where e1 E E, E', 1 � i p. Using these pairings we identify the

dual spaces of &'E, with respectively. Notice that the

dual pairing of with induces a pairing of with

and so a pairing of with Thia pairing differs from the

pairingwe have defined between ,PE and IPE' by a factor p!

We leave the case of the dual pairing for the symmetric powers

of E as an exercise.

For p > 0, we define the linear map U: /PE 1E by

-

where ej E, 1 � j � p, and "—!' as usual denotes omission.
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Properties of the map U.

1. The operator U is the transpose of A, that is,

—

for all X ARE, • E', t

2. If X ARE, AUØ() — pX.

3. If Z e then U(AZ) — where A'3 denotes

the operation of wedging the first factor of into the

third factor.

4. If we iterate U, the map satisfies the

relation — I, where A: is just the

operation of wedge product. In particular, if we identify with

Alt U1' — p!I, p � 0.

Properties 1 —3 are easily proved by working on generators,

property 4 may be proved by induction on p.

We conclude this section by describing the operétion of

contraction or interior of tensors. First observe that since

the dual pairing E' x E IR is bilinear it corresponds to a linear

map E' ÷ ]R. This map is usually referred to as "trace" as if we

use the natural identification of E'aE with L(E,E) it corresponds to

the operation of taking the trace of a linear map. Trace is the

simplest example of a contraction operation and we shall now consider

generalisations. With a view to later applications we work with tensor

products of exterior powers of vector spaces. Actually this is no loSs

of generality since A1E E, A1E' — E'.

Suppose p � q 0. We define the linear map

C:

by requiring that

—
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for all X ARE, 4) We similarly define

C:

in case q p.

Given X e and q � p we define

Cx:

by — C(x®4)), 4) c ARE'. We similarly define C4) for 4) e We

call C a contraction (operator) and contraction with X.

Properties of the contraction operators C, Cx, C4).

1. For p � 0, the map C: IR is equal to the dual

pairing of with A1'E'.

2. is the transpose of the operator "wedge product with X'.

That is,

<4',XAY>, X E ARE, Y c 4' A9E

3. - CYAX X c ArE, •f e ARE.

4. For Xc E, is defined on generators by

Cx(4,lA ... A
-

A ...

We have similar properties holding for contraction with forms.

We omit proof8 of the above properties which all follow straight-

forwardly from the definition and standard properties of wedge products.

We now wish to define contractions between factors of an

arbitrary finite tensor product of exterior powers of E and E'. Suppose
n p p

that V — ® where each is either AiE or Assume that
i—i

the jth. and kth. factors are equal to A

and A if Pj V is really
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a tvnsor product of n—i factors but inclusion of the trivial factor

for the present simplifies our indexing). The contraction between

the jth. and kth. factors of V will be the linear map V V

defined on generators by

s... tJ.Ka...) ... ale... Pj

= ... m • •... • 1 a •..,

Notice that our convention is that superscripts refer to factors which

are exterior powers of E, subscripts to factots which are exterior

powers of E'. The product of the contractions and is

defined if {i,j} n {l,m} 0 and is the simultaneous contraction of the

jth. and kth. and 1 and mth. factors of V. Necessarily,

The composition is defined to be the composite of the contraction

with the contraction where is a contraction of the space

not V. We may also use brackets to describe compositions of contract-

ions. Thus if Z c V, Notice that V has fewer

factors than V and so, in general, #

Example 4. Let p r+s. Then the following diagram of

contractions couseutes.

C3
ArE.APE, aA9E 2

IC
(l)rsC

Indeed, let X ArE, A8E, APr_SE,
4 E ARE'. Then

= Property 2 of contractions.

Since this is true for all 1 Apr SE, our assertion follows. In our

notation above we have
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We now list, without proof, some additional properties of

contraction operators.

Properties of the contraction operators C, continued.

5. Let X ARE, and suppose q � p. Then

(q—p)!p!

In particular, if X E,

—

6. Let X c ARE, * then

7. Let X c E, ARE', * ARE'. Then

= Cx(*) +

8. Let p � q > 0 and define

C1:

by

— X ARE, *

Then C— (C1)1'/p!:

We end this section with an example giving another characterizat-

ion of trace.

Example 5. Let A L(E,E) and dim(E) — n. Then the map
a a

A: A E E, defined on generators by

A(Z1 A ... AZ)
—

Z1 A .. A A(Zi) A ... A

is equal to scalar multiplication by —trace(A). Working on generators in

L(E,E), let A L(E,E) and Z EArlE. Then

A(Z) = XAC*Z = —((*X)Z, Property 7 of contractions. But C*x is just

trace (A)
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Exercises.

1. Verify that &'E' is naturally isomorphic to the space

of p—linear real valued maps on E. Show also that and are

naturally isomorphic to the spaces of p—linear alternating and

symmetric real valued maps on E respectively.

2. Let p � q. Show that C: -, is defined in terms

of generators by the formula

C(x1 A •.. A ... A4q) .

p'

where the sum is taken over all p—tuples I (i1,.. satisfying

1 � q and (q—p)—tuples j satisfying

1 � <1q_p � q, subject to the condition that

a permutation of {l,...,q}. Sign(I,J) denotes the signature of this

permutation.

3. Work out C1: A2EGA2E' ESE' in terms of generators and verify

that (C1)2 — 2C.

4. Generalise the example at the end of the section to find other

invariants of the map A.

5. Let 0 E —LG ÷ 0 be a short exact sequence of vector

spaces and linear maps. Suppose that the dimensions of E, F, G are

p, q, r respectively. Prove that there exists a canonical isomorphism

m (Hint: Prove that there exists a natural monomorphism

k: defined by ArBI(q) A141,X>, • E

Show that iinage(k) More generally,

show that for n � 1 we have a natural exact sequence

0 -* 0

6. Let dim(E) — a and E', 0. Show that the sequence

0 AnE c.L ... • 0

is exact (Hint: Choose an orthonormal basis for E such that • is an

element of the dual orthonormal basis for E').
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7. continuing with the assumptions of question 6, verify that

a) 0 � p �

b) The diagram

j (Ct)'

A"E' ,An_p_1E

commutes, 0 p � n.

(Part b) amounts to saying that the sequence of question 6 is "self—dual").

§2. Calculus on differential manifolds.

In this section we review that portion of calculus on manifolds
that does not depend on a choice of Riemannian metric. Proofs and
further details may be found in Kobayashi Nomizu [1] and Abraham

and Marsden [1]. For the theory of vector bundles we refer in addition

to the books by Husrnoller [ii and Lang [1] and to the basic theory

outlined in §5 of Chapter 1.

Throughout this section M will denote a differential manifold

of dimension m. For this section only, Cr(M) will denote the space of

real valued Cr functions on M, 0 � r �

Let E be a smooth (that is, vector bundle on M. For r � 0
we let Ct(E) denote the vector space of Cr sections of E and

denote the space of Cr sections with compact support.

Notation and examples (see also §5 of Chapter 1).

1. We let M x iR denote the trivial real line bundle over M.
Notice that Cr(]R) — Cr(M).

2. We letYM respectively denote the tangent and cotangent

bundles of M.

As described in §5 of Chapter 1, we may form the dual bundle E'

of a vector bundle E and tensor products of tensor, exterior and

symmetric powers of E and E'. The contraction operations described in



11.

§1 of this chapter all extend to these bundles and their sections. By

way of example, there is a natural vector bundle map trace: EeE' IR

defined by: trace(e e 4, e
x x x x X X

and 4, are Cr sections of E and E' respectively, we may define the Cr

section trace(5G4,) of IR by: trace(Se4,)(x) — In

the sequel we use the same notation for contractions on vector bundles

and their sections that we developed in the previous section for vector

spaces.

Differential forms. A section of the bundle is called a

differentiai p—form (on M). For p � 0 we have the operation

d:
-+ C°'(,r1.9'N) of exterior differentiation and the corres-

ponding sequence

...

Properties of exterior differentiation.

1. d is a—linear.

2. d2—O.

3. — d4Aç + 4,

4. If f x N, then df(x) — L(TXM,IR)

5. If f: M + N is and 4, then d(f*$) f*d4, (f*

denotes the operation of pull—back of differential forms induced by f).

6. In local coordinates, if 4, dx A•• .Adx4
l"p p

1 p
where the coefficients 4, are C functions, then

1... p

— Adx A. ..Adxi
jl l�i1<.. 1" p p

We say that a p—form 4, is closed if d$ 0 and that it is

if, in addition, there exists a (p—l)—form such that dC 4,. A

closed form need not be exact though by lemma it is always

locally exact. That is, if $ is an exact p—form on N and x N we may

find an open neighbourhood U of x (typically contractible) and a

(p—l)—form defined on U such that dC 4,IU.
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p a
The bundles A 5'M are zero bundles for p > a and AS'M is a

real line bundle. We say that M is orientabie if is isomorphic

to the trivial line bundle IR. If H is orientable we have a natural

It—linear map fM: -* IR called integration. If N has boundary

(necessarily orientable) then we have Stokes'

Js
JM

d$, 4's

For p � 0, we define the pth. de cohomology group,

I4DR(M,IR), of M to be the quotient vector space

(Ker d:

Clearly, — 0, p > a. It Is true, though by no means trivial,

that if H is compact the de Rham cohomology groups are all finite

dimensional vector spaces. It is also true that integration defines a

dual pairing between and the singular homology group

p � 0. As a consequence, is isomorphic to p 0.

We give a proof of this isomorphism in Chapter 6, §3.

Vector fie'ds and Lie derivatives. We say that a map
C (M) .p C (H) is a dertvatton if 6 is It—linear and

6(fg) — (6f)g + f(6g),

for all f,g We denote the set of derivations of by D(M).

We have a natural map of into 0(M), denoted K J—>Lx, defined by

Lxf
—

Lxf called the Lie derivative of I with respect to X. It is a basic

result that this map of C°°Ø'N) into D(M) is a bijection. This allows

us to think of vector fields as (1st. order) linear partial differential

operators on Cm(M).

Given X,Y a the map Is a derivation of C°'(M)

and so there exists a vector field Z such that LxLy — In the

sequel we call Z the Lie bracket of X and Y and denote it by [X,Y].
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Properties of the Lie bracket.

1. C , ] is JR—bilinear.

2. [X,Y] — —[Y,X], X,Y

3. [X,[Y,Z)J + C?,tZ,X]] + {Z,[X,Y]] — 0 for all X,Y,Z e

(Jacobi identity).

4. If f: M + N is a diffeomorphism then —

for all X,Y c is the operation of push—forward of vector

fields induced by f).

We may give an invariant definition of exterior differentiation

in terms of Lie derivatives and brackets. Suppose that is a

differential p—form and X0,. .. are vector fields on N then

<d$,X0A ... AX>
—

(_ ... A

A ... A A ...

For each X define Lx: + by Lx? (X,Y].

We refer to as the Lie derivative of Y with respect to X. We now

extend the operator Lx to C sections of arbitrary finite tensor and

exterior products and S'M. We first define Lx on sections of

S'M. Suppose $ C(f'M) then will be the differential 1—form

characterised by

Lx<$,Y> — <Lx$,Y> + <$,LxY', for all Y

It is quite straightforward, using the basic properties of Lie

derivatives, to check that this relation does indeed define Lx$ ea

a section of We shall extend Lx to arbitrary tensor and exterior

powers by requiring that it is a derivation. Thus, for p � 0, we

define + C'(/&M) by

A ... AX)
—

X1 A ... A LxX1 A ... AX
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and by

A ... A
—

A ... A A ... A

where and are Vector fields and 1—f orms on M respectively.

Suppose that V and W are vector bundles which are finite tensor

products of tensor and exterior powers and f'H and that we have

defined Lx on sections of V and V. We define Lx:

by

Lx(SeT) — + SaLXT, S c T

Again it is not hard to verify that Lx is well defined. Since we have

already defined L.A on sections of exterior powers offM and9'M the

above construction allows us to extend Lx to arbitrary finite tensor

products of tensor and exterior powers

of Lie derivatives is that they

coimnute with contractions. Indeed this property is built into the

definition of Lie differentiation on differential 1—forms for we have

+ C@eLxY),

X,Y We leave it to the reader to verify that

Lie derivatives cosinute with any of the contraction operations we have

so far defined on tensor products and f'M.

Exercises.

1. Let X e • f c Verify the identities

1) dCx$ + Cxd$

ii) + df A

2. Let A Define A: C°°(qM) by A(X)

Show that we can extend A, as a derivation, to sections of any finite

tensor product of tensor and exterior powers and YtM in such

way that A is the zero operator on and commutes with contractions.

Show further that if is any operator defined on sections of tensor
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products and T'M that is a derivation and commutes with

contractions then there exist unique X and A e

such that fi Lx + A.

3. Verify the following local forms for the Lie derivative and Lie
bracket

a)

b) Ix —i — Y

Complexification.

Throughout this section tensor products over IR and will be

denoted by and respectively. We use similar notation for

exterior and symmetric powers. Omission of a subscript will generally

indicate a product over tI unless the contrary is clearly indicated.

DefinitIon 5.3.1. Let E be a real vector space. The

complexification cE of E is the vector space

Properties of complexificatlon.

1. ha8 the natural structure of a complex vector space with

scaler multiplication defined by — e e e

2. —

cE has a natural splitting ERaEJ into real and imaginary parts

defined by ER — e e E}.

4. The operation of complexification commutes with tensor, exterior

and symmetric products. For example, if p �O, m&'(E) (as

complex vector spaces).

Z This isomorphism is defined by mapping

to In the sequel we set cE'

6. The dual pairing ExE' IR complexifies to the dual pairing

x E' On generators, this pairing is defined by

cd<4,e>, c,d E', e E. Using this dual
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pairing we identify the dual spaces of &'E, fI'E with &'E', RE'

respectively. We should stre8s that we shall always use this dual

pairing in the sequel.

One of the main reasons that we introduce complexification is

so that we can define conjugation.

Definition 5.3.2. The map 5: cE + cE defined by

—
e E, c C (1, is called conjugation. We usually

write S(X) — X e

Properties of conjugation.

1. Si — —iS (conjugation a conjugate complex linear map).

2.

3. Conjugation commutes with the operations of tensor, exterior

and sysruetric products. For example, conjugation on f?cE may be

defined as Rs or, equivalently, as conjugation on In

particular, notice that if X]A...

A

the natural isomorphism between cE' and we may

regard conjugation as conjugation of functions. That is, if f

we define ? cE' by f(e) f(e), e e E.

5. Conjugation commutes with the dual pairing cE cE' + (I and so

for all X cE' we have

6. The conjugate of a map A s Le(cEIcF) is given by A — S.A.S.

Finally, we remark that if 4, is an element of some finite

tensor product of tensor and exterior powers of E, cE' then 4, is

said to be real if 4, — By property 2 above this is clearly equivalent

to the existence of a real tensor y such that 4,

Exercises.

1. Let X Show that X + is real, X—X is imaginary (that

is, a point of E1).
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2. Let A e and AeRl E denote the complex—

ification of A. Show that —

3. Let A e Show that —

§4. Complex linear algebra.

This section, which may be regarded as a synthesis of §51,3,

summarizes the main results of complex linear algebra that we need in

the sequel. Again we defer any consideration of inner product

structures.

Suppose that E is a complex vector space. We let E* denote

the complex dual space of E. The theory of contractions that

we described in §1 immediately extends to (complex) tensor products

of tensor, exterior and symmetric powers of E and E*. We continue to

use the notation developed in §1.

DefinitIon 5.4.1. (See also §5, Chapter 1). Let E be a real

vector space. An endomorphism J of E is said to define a

8tructure on E if — —I.

If E has complex structure J then E may be given the structure

of a complex vector space if we define (a+ib)e a+bJ(e), a,b E P.,

e E. In particular, dirnRE must be even, Conversely, if K is a

complex vector space we may define a complex structure J on E by

j(e) — ie, e K.

DefInition 5.4.2. If K is a vector apace with complex

structure J, we define the conjugate of K, to be the vector space K

with complex structure —J.

Remark. Suppose E is a complex vector space and that X K has

coordinates (z1,...,z) relative to some (complex) basis B of K. Then

B is also a basis of and the coordinates of X E are (z1,.
.

In this sense, taking the conjugate of a complex vector space corres-

ponds to taking conjugates of the coordinates. Shortly, we shall use

the device of complexification to give a "coordinate—free" version of

this important operation. Indeed, much of the formalism we now develop
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is directed towards obtaining a satisfactory definition of conjugation

for complex vector spaces that does not depend on a choice of coordinate

system and can be extended to complex manifolds.

Properties of cauplex structures and conjugate spaces.

1. Let E, F be vector spaces with complex structures

respectively. A map A is complex linear iff A.JE JF.A.

The space has the natural complex structure J defined by

J(A) — A.JE — JF.A. We may define two dietinot complex structures

on by .11(A) — A.JE; J2(A) JF.A

From now on assume that E is a vector space with complex

structure J.

2. The complex structure on E* is defined by J($) — $.J —

$ e

3. as complex vector spaces. The isomorphism is defined

by mapping •J* to E where — e E. Notice

that the complex structure on is defined by — cp.(—J) ii).

In particular, is the space of conjugate complex linear maps on E.

4. The operation of taking the conjugate space commutes with the

operations of taking dual, tensor, exterior and symmetric powers.

For example as complex vector spacea.

As we described in we may give cE the structure of a complex

vector space. Clearly the complexification of J, which we continue

to denote by J, also defines a complex structure on As we shall

soon see these two complex structures on cE are different. In the

sequel, we always give the complex vector space structure induced

from and never that induced from J.

Define P,P: -# by

P — ½(I—iJ), P — ½(I+iJ).

Clearly, p. are complementary projections: p2 p,
—

— I. We set E E — Then E, are complementary

complex subspaces of cE and so c8 — Ee!. Observe that —
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—i and S(E) = E (hence the notation). We have natural isomorphisms

3: E + E; j: E + defined by

3(e) — ½(eal—JeOi); 3(e) ½(eøl+Jeai)

Hence we see that E Notice that if we regard this isomorphism

as an identification then E, become complementary complex subspaces

of in such a way that the complex structure on cE restricts to the

complex structure J on E and the conjugate complex structure —J on E.

Let us now examine how conjugation fits into this framework.

We have the commutative diagram

E E
c

E -EeE

We see that the identity map I: E E, which is associated to taking

conjugates of coordinates, corresponds to the invariantly defined

operation of conjugation on

Properties of complexifled linear maps.

1. Suppose E, F are complex vector spaces and A Let

denote the complexification of A. We say that

cA respects the splittings EeE, F,F of J (or just splits) if
where A1: E F, A2: + T. We have the useful result

that splits 1ff A s Moreover, if splits, A2 In

the sequel, if A e we write AeX and observe that the

following diagrams commute

E

A - A -

F FøP

The map A: is defined to be equal to A on the underlying real

vector spaces of and
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2. If A then (Exercise 2, §3).

Hence if A

since A jAj1. In particular, the real

determinant of a complex linear map is always positive (this implies,

for example, the orientability of complex manifolds).

Next we turn to dual spaces. Recall from §3 that cE' may be

identified with As described above we have complementary

projection maps P,P: cE' cE' defined by

P(4)) ½(4)—i4),J), P(4)) — ½(4)+i$.J), 4) c cE'

Observe thst for all 4) cE's P(4)) e Es', Hence we have

the splitting

— E*eE*

This splitting amounts to saying that every complex valued R—linear

form on E has a unique decomposition as a sum of a complex linear and

conjugate complex linear form.

Let us see how conjugation fits into this picture. The

conjugation map S: E* defined by taking conjugates of linear

forms, is the restriction to E* of the conjugate operator S: cE' -*

defined in §3. Hence we have the commutative diagram

js_____ 4s

The maps j, j are just inclusion maps. Notice that the conjugation

map S: E* + factors through E* and compare with the previous

diagram that we gave for conjugation on

As described in §3, the dual pairing ExE' + complexifies
to the dual pairing < , >: + g. We now investigate how this

pairing behaves with respect to the factors E, E of cE and E*, E*

of CE'.
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Proposition 5.4.3. The dual pairing , >: E x 1 induces

1. The zero pairing between E and

1. The zero pairing between and E*.

2. A dual pairing of E and E*.

2. A dual pairing of and

Moreover, the dual pairings between E, E* and E, are given

explicitly by

— 4(e), e a E, a

— ip(e), e E, I) a E*.

Proof. It is enough to verify statements 1, 2 as 1, 2 follow

by conjugation. Suppose X a E, cf a Then there exist e a E,

a E' such that X — j(e) ½(eel—Jeai), • 3(e)—

Now — — 12cç,J2e> + — — 0, proving 1.

If instead a E*, there exists a E' such that $ —

and computing we find that

— — 4(e) . 0

We now use Proposition 5.4.3 to examine how complex linear maps

and their duals behave under cotnplexification and conjugation. If

A: E F is a—linear, we have induced a—linear maps A: E F,

A*: }'* E*, A*: F* + defined by

1. — A(e), e a (where, as real vector spaces, E — E).

2. <A*(f*),e, — f*(A(e)), e a E, fA a F*.

3, .A*(T*),e> — ?*(A(e)), e a E, a

Since A is assumed ct—linear, cA — ABA, cA' — A*,A* and we

have, by Proposition 5.4.3, the following alternative characterizations

of A, A*, A*.
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i: A -

2 <A*(f*),e> <A(e),f*>, e E, f* F*.

3: — <A(&),?*>, ?*

The pairings here are all induced from the dual pairing of E and E'.

Observe how the definitions are now much more natural. In particular,

3' is just the conjugate of 2'. This naturality, that allows us to

commute conjugation with other operations such as contraction or tensor

product, is one of the main advantages of working with the complex—

ifications of E and K'.

Next we look at the exterior algebras of cE and cE'S By

Theorem 5.1.5 we have the canonical isomorphisms

r+Sp

U:
r+s—p

We set Ar,s(E) — r,s � 0.

For p � 0 we therefore have the direct sum decomposition

r+5p r+sp

An element of (reap. is called a complex —vector

(reap. a complex (r,a)-forrn).

Properties of the exterior algebras of and

For properties 1 and 2 below we suppose = in.

1. — 0 if either r > in or s > m. Similarly for forms.

2. A2mcE Similarly for forms.

3. A necessary condition for a complex

(r,s)—vector to be real is r a. Similarly for forms.

4. If X Y then ZAY r,s,u,v 0.

Similarly for forms.
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5. The dual pairing x + restricts to a dual pairing

which is given on generators by

A •.. AXr A Y1 A ... A A ... A A A ... A

— <X1A ... ...

e E,Y1EE, CE*, l�j
r u, then the induced pairing

is always zero (both properties follow from Proposition 5.4.3).

6. If A e then t?cE induces maps

r+s p. Similarly for forms.

7. If r � u, a � v, we have the contraction operation

C:

obtained as the restriction of the contraction berween and

Similar remarks hold for the contraction operations
defined in §1.

We conclude this section by looking at bases for the spaces
we have been considering.

Suppose B {ei,...,em} is a complex basis for E. Then B is
a complex basis for and BR {e1,Jei,...,em,Jem} is a real basis for

E. The dual real basis for E' is given by

(ej,(Je1)',.
.

— since —

We now define bases 8, 8, B*, for E, E, E*, respectively. Set

B — E: — 1 � j � m}.

B — (f3 E: 1 � i � m)
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BA — E*: — ..i(Jej)' • 1 � j � m}

+i(Jej)' ej 1 � j � m}.

Notice that f1 — 1 � j � m. Hence our notation for the

bases B, R and BA, (such pairs of bases are called self-conjugate).

We see also that B and BA are dual bases (for the pairing < , >) since

_i(Jej)'> — ½+½ — 1

= 0, j k.

Similarly, and are dual bases.

With respect to the self—conjugate basis that we have construct-

ed on every X cE may be written uniquely in the form

m in -
X +

z z 1. The coordinates (z ,...,z ,z ,...,z ) are called

self—conjugate coordinates on

Suppose that F is another complex vector space with complex

basis C and associated bases C, C* as described above for the

basis B of E. Let A have matrix with respect to the

bases B and C. Then

[Ai [A*] [aji]; [iji];[A] [au]; [A]

where the matrices are computed relative to the appropriate bases

associated to B and C.

Finally suppose that 4, In coordinates

we may write X and 4, uniquely in the form

X = 4' =
I,J I,J

where the summations are over all r—tuples I (i1 ir) satisfying

1 � i1 < � mand s—tuplea J — (j1,...,j5) satisfying
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1 s < •.• <is � in and we have used the abbreviated notations f1f3 and

f f A A A A A f* A A AI J i1 ir 1r

respectively.

Notice that we use subscripts for coordinates of forms and

superscripts for coordinates of vectors.

Examples.

1. Suppose X and • are as above. Then

—

, —
'—, 1. 'ij

I,J

A similar formula holds for

2. Same assumptions on X and •. We have

—

I,J

Exercises.

1. Show that cE* is naturally isomorphic to cE' and

deduce that

E be a real vector space, F a complex vector space. Show

that there is a natural operation of conjugation S: -*

that is the identity if E — IR and conjugation on if F —

3. Show that the set of complex structures on is in bijective

correspondence with (Here we take the standard complex

structure on and regard CL(m,a) as a subgroup of

§5. Generalities on complex vector bundles.

In this section we collect together a number of definitions and

elementary facts about complex and holomorphic vector bundles. The

reader should be familiar with §5, Chapter 1.
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Complexification. Let E be a (smooth) real vector
bundle over the differential manifold M. The complexification E

is defined to be the complex vector bundle over N. Notice that
if E has transition functions -i. then has transit-
ion functions + where x

We remark that all the results on complexification described in §3

extend insnediately to vector bundles and their sections. In particular,

we have a conjugation operator S defined on and CW(cE) and this

operator commutes with tensor product operations and duals in the

manner outlined in §3.

Complex structures. Let E be a (smooth) real vector

bundle over the differential manifold M. A complex structure J on E is

a vector bundle morphism J: E -# E satisfying — —I. Equivalently, a

complex structure on E is a section J of the vector bundle L(E,E)

over N such that J(x)2 — for all x ii (see exercise 6, §5,

Chapter 1). If E is a complex vector bundle over N then S has a complex

structure defined by acalar multiplication by I in the fibres of S.

Conversely, It is not hard to show that if S has a complex structure

then E has the structure of a complex vector bundle (the proof uses

Exercise 3, §4, together with the fact that the quotient map
GL(2m,]R) admits local sections).

Definition 5.5.1. Let N be a differential manifold. A

complex structure J onfN is called an almost complex structure on N.

We refer to H as an almost complex manifold.

Example 1. Let H be a complex manifold with atlas
i I). The transition functions for the tangent bundlegM

of M are given by Since is biholomorphic,
+ GL(m,tI) for all i,j s I. HenceYM has the structure of a

complex vector bundle and so M has the structure of an almost complex

manifold.

Holomorphic and anti-holomorphic vector bundles. For the
remainder of this section we shall suppose that N is a complex manifold.

Definition 5.5.2. An rn-dimensional holomorphic vector bundle

E over N consists of a complex manifold E and holomorphic map p: S ÷ M

together with a family -* of biholomorphic trivialisations

of E.
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Remarks.

1. A holomorphic vector bundle necessarily has the structure of a

complex vector bundle.

2. An rn—dimensional holomorphic vector bundle may equivalently be

described by specifying a family of transition

functions such that is holomorphic for all i, j. It is clear from

the transition function description of holomorphic vector bundles that

if E is a holomorphic vector bundle then so is E* and any finite tensor

product of tensor, exterior and syninetric powers of E and E*.

3. We denote the space of holomorphic sections of E by Q(M,E) or

just if M is implicit from the context.

Example 2. Let M be a complex manifold. has the

structure of a holomorphic vector bundle.

Suppose that E is a holomorphic vector bundle with transition

functicms4ij: (.'GL(tn,cr)). If E has complex structure J we

let denote the complex vector bundle over M with complex structure —J.

The transition functions for E are given by

•ij:
•

where — x as real linear maps of am. Obviously

the are no longer holomorphic maps. Instead they are

a local holomorphic coordinate system on H we have

0, 1 � k � dim(H).

In the sequel we shall say that a complex vector bundle E over M

is anti—holornorphic if the transition functions for E sre anti—holomorphic

or, equivalently, if is a holomorphic vector bundle.

Remark. The dual of an anti—holomorphic vector bundle is anti—

holomorphic as are finite tensor, exterior and symmetric products.
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§6. Tangent and cotangent bundles of a complex manifold.

In this section we show how the theory of §4 can be applied to

the study of the tangent and cotangent bundles of a complex manifold.

Our results provide the framework we need for the construction of the

global Cauchy—Riemann operators on an arbitrary complex manifold that
we carry out in §7.

We start this section by briefly indicating how the theory
outlined in §2 for differential manifolds can be "complexified".

Let M be a differential manifold with tangent bundle fM. We

call the complex vector bundles and the complex tangent and

complex cotangent bundles of H respectively. Sections of the bundle
are called complex differential p—forms on H, p � 0. Exterior

differentiation complexifies to give an operator on complex differential

forms which we shall continue to denote by d. We note that this operator

on complex differential forms obeys all the properties described in §3,

or rather their complexified analogues, and in addition is a real

operator:

d4, 4' p � 0.

The Lie bracket cornplexifies to give a Lie bracket on

defined by

[x1+iY1,x2+iY2] [X1,X2] — {Y1,Y2J —i([Y1,X2] +

where X1,X2,Y1,Y2 Similarly the Lie derivative complexifies

to give a derivation of the full tensor algebra of for all

Z We remark that the Lie bracket and derivative that we

have constructed are real operators, that is they commute with

conjugation. For example, if X,Y C°°((H) we have [X,Y]

Suppose now that H is an rn—dimensional complex manifold with

atlas {(Ui,4'j): i I). We let = denote

the transition functions for the tangent bundlefM of M and J denote the

complex structure onfM. Applying the theory of §4, we see that the

transition function c4'ij of (N splits as a sum where
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and 8jj: (here we have identified

with using the maps j, 3 described in §4). Clearly and

are the transition functions for complex vector bundles on M which we

shall denote by TM and TM respectively. By our construction we see

that TM and TM are complementary complex eubbundles of (M and so we

have (M — Moreover J — +i on TM, i — —i on TM and S(Th) - TM

(Hence the "bar" notation).

m Tn m -Tn
We have the natural inclusion map j: and

projection P: + Since — j411P and j and P are complex

linear the are holoinorphic and so TM has the structure of a

holomorphic vector bundle. Indeed the map j induces a holoinorphic

vector bundle isomorphjsm betweenrM and TM. Similarly TM has the

structure of an anti—holomorphic vector bundle. We call TM the

holocnor'phic tangent bundle of M and Th the anti-holomorphic tangent
bundle of H. We reserve these terms for the appropriate Bubbundles of

and continue to refer toYM as the real tangent bundle of M even

though it is isomorphic to TM.

Taking the standard basis of we can easily compute the

matrices of the transition functions 0 , 0 . To simplify notation,

set — , 0 and let denote the coordinate

system on given by the chart We follow the basis notat-

ion given in §4. The qth. column of [0(z)] is the vector

0(Z)(fq) —

— _icu$z(Jeq el))

—

Hence [0] — Conjugating we have — —

Notice that our expression for [8] given an alternative verification

that TM has the structure of a holomorphic vector bundle.

Turning now to dual bundles we let TM* and TM* denote the

complex dual and conjugate complex dual bundles of TM respectively.

We have the direct sum decomposition T'M — and, as above,

TM* is a holomorphic vector bundle, an anti—holomorphic vector
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bundle. We call TM* and TM* the holomorphic cotangent and anti-

holomorphic cotangent bundles of H respectively. The transition

functions for are given by
—

and so the transition

functions for TM* and Th* are given by and respectively. In

local coordinates, the matrices of and are the transpose and

conjugate transpose of the matrix respectively.

Next we consider the existerior algebras of (H and arM.

Working with transition functions we may construct for r,a > 0,

r+s — p, subbundles and of and

respectively such that

-
=r+ap r+s=p

r,s r,s
We call A (H) (reap. A (H) ) the bundle of (r,s)—vectors (reap.

(r,s)—forms) on H. If s — 0, we see that and

In particular, these bundles are holomorphic vector

bundles on H, r � 0.

Notation. For r,s,p 0, we let (reap. denote the

space of sections of (resp. tPj14). (From now on we shall

never need to refer to function8 on N unless p = when we write

We let Cr,s(H) (reap. Cr (H)) denote the space of sections

of (resp. We let ç1P(14) (reap. denote the

space of holomorphic sections of (reap. R'°(M)).

All the theory described in §4 extends immediately to the

exterior algebras of and and the corresponding spaces of

sections. In particular for r,s � 0 we have a conjugation operator
r,s , s,r

S: A (H) A (H) and induced conjugation operator

S: (similarly for (r,s)—vectors). We usually write

S($) = for a complex form or vector. Notice that a necessary

condition for an (r,s)—forin to be real — — — is that r = a.

Suppose that N is a complex manifold and f: N + N is a

holomorphic map with tangent map ST: .9M +YN. The complexification

of5T splita sea sum TfeTf: TN,TN. Similarly the

complexification of the cotangent map Y'f: rN splits as a

sum Tf*GTf*: TN*eTN* + TM*eTM*. Consequently, for r,s � 0, the

tangent and cotangent maps of f induce vector bundle maps
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and Ar,s(N)t +

We now give a local description of complex (r,s)—vectors and

forms in terms of the self—conjugate bases given in §4.

Suppose C and (V,C) is a chart on M. Then is an

(r,s)—form on the open subset C(V) of Set U ç(V) and n

As is conventional, we denote the standard basis of
gm

by

{dx1,dy1, . . For 1 j m we set + (
(1m,

— t Then 1 � j � ml is the self—

conjugate basis of described in §4. Moreover, if we think of

as defining sections of Tq.m*, respectively,

and 1 � j � m) give bases for C°°(TU*) and C"(TU*) over

respectively. Hence we may write uniquely in the form

—

where a and the summation over the r—tuples I and s—tuples

J is as described in §4. Next we turn to the local form for complex

(r,s)—vectors. Identifying (complex) vector fields with (complex)

derivations, it is clear that if we set — —

i and

form bases over d"(U) for d'°(TU) and CG2(TU) respectively. Hence we may

write X Cr,s(U) uniquely in the form

x X1/az1
I,J

where X C (U) and we again follow the notational conventions of §4.

Remark. Much of what we have done in this section goes over

to almost complex manifolds. Thus if H is an almost complex

manifold with almost complex structure J we may define TM — Kernel(J—i)

and — Kernel(J+i). TM and TM are complementary complex subbundles

of fN though now, of course, we can no longer say that TM is a

holoinorphic vector bundle as we are not assuming that M has a complex

structure. In the next section we shall discuss the important question

of when an almost complex structure on H is associated to a complex

structure on H.
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§7. Calculus on a complex manifold.

Suppose that M is an almost complex manifold with complex

structure J on M. We start this section by investigating the relation-

ships, if any, between J and exterior differentiation and Lie brackets.

Definition 5.7.1. The torsion of the almost complex structure

J on N is the tensor field N characterised by

<N,XAY> — [JX,JY] — LX,?] — J[X,JY] — J[JX,Y],

where X,Y c

Remarks.

1. As usual the reader should verify, using exercise 6, §5, Chapter

1, that N is a well—defined tensor field on M.

2. In the literature N is usually defined as a section of

and differs from the torsion field as we have defined it by

a factor of 4.

3. In the sequel we usually abbreviate an expression like <N,XAY>

to N(XAY) or just N(X,Y). Note that the pairing is that between

exterior and not tensor powers.

The significance of the torsion of an almost complex structure

may be gauged from

Proposition 5.7.2. The spaces are Lie

subalgebras of C°°(rM) if and only if the torsion tensor field N

vanishes.

Proof. Let U,V We may write U, V uniquely in the

form U X—iJX, V Y—iJ?, X,Y a Computing we see that

[U,V] — A + iS, where A LX,?) — [JX,JY], B UJX,Y] + [X,JY]. Now

A + iB 1ff JB — A. That is, 1ff .J[JX,Y] + J[X,JY] —IX,?] —[JX,JY]

But this is precisely the condition that the torsion field N vanishes.

Conjugating we see that if one of is a Lie subalgebra

of so is the other. 0
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Proposition 5.7.3. The torsion of the almost complex

structure assoicated to a complex manifold vanishes.

Proof. Choose local analytic coordinates and compute N on

the basis vector fields 1 � j,k The Lie bracket of

any pair of these constant fields vanishes and since —

we see that N must vanish identically. 0

Remark. It is true, by a fundamental theorem of Newlander

and Nirenberg, that if the torsion of an almost complex structure on M

vanishes then the almost complex structure is associated to a complex

structure on N. We say that the almost complex structure is integrable.

This result is not difficult to prove if H is real analytic (a proof

may be found in Kobayashi and Nomizu {2; Appendix 8]). For the general

case we refer to [1]. Although we shall not make any

systematic study of almost complex manifolds in these notes we ahould

point out that there are topological obstructions on a differential

manifold for it to admit an almost complex structure and on an almost

complex manifold for it to admit an integrable complex structure.

Specifically, a theorem of Hirzebruch and Hopf [1] gives necessary

and sufficient conditions on a compact, oriented 4—manifold for it to

admit an almost complex structure. These conditions imply, for example,

that S4 does not admit an almost complex structure and so cannot be

given the structure of a complex manifold. Borel and Serre [1] prove

that Sn can admit an almost complex structure only if n — 2,4,6. Of

course, if n — 2 we obtain the Riemann sphere. This leaves the case

n — 6. It is well known that S6 admits an almost complex structure

(see Kobayashi and Nomizu [2; page 139]) which is, however, not

integrable. As yet it is unknown whether S6 admits an integrable

almost complex structure. Results of Van der yen Cl] show that there

are topological obstructions to the existence of integrable almost

complex structures on an almost complex manifold. For a useful survey

of results on 4—manifolds see Pittie [1].

Theorem 5.7.4. Let H be a complex manifold. Then for r,s 0

we have

+ cr.s+l(M).
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Proof. Let 4, C Then, as in

we have

AX>
—

A ... AX>.

Now suppose p — r+s, 4, is an (r,s)—forin and each lies in or

C(TM). By Proposition 5.7.2 we see that if more than (r+l) of the

Xj's lie in or more than (s+l) of the Xi's lie in then

the right hand side of the above expression vanishes (remember that

the pairings between Th, TM* and Th, are zero). 0

Remark. If H is an almost complex manifold it is easily

seen that c

A straightforward calculaion shows that the result of Theorem 5.7.4

holds if and only if the torsion of the almost complex structure

vanishes. See Kobayashi and Nomizu [2] for further details.

It follows from Theorem 5.7.4 that if M is a complex manifold
r,s r+l,s

we can define for r,s � 0 operators 3: C (M) C (H) and

3: characterised by the identity d — 3 + 5. We

remark also that for p � 0, 3, 5 induce operators 3,5:

satisfying d — 3 + 5.

Properties of the operators 3, 5.

32
0, — o, + — o.

2. 3, 5 are conjugate operators: 54, — 4,

3. — 3$A 4, e CC1(M). Similarly

for 5.

4. If f: H N is holomorphic and 4, then f*34,

Similarly for 5.

5. In local coordinates, suppose 4, — 4,15dz1dzj. Then
I,J

34,

—

dz1dz3 and 54,

—

dzjdz1dz3.
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6. For p � 0, we have çP(M) — Kernel In

particular, A(H) — Kernel

Properties 1—4 follow immediately from the corresponding

properties of d together with Theorem 5.7.4. For property 5 we use

the local identity df f a function.

Property 6 is immediate from Property 5.

We see from Properties 5 and 6 that the operator is our

required generalisation and globalization of the Cauchy—Riemann

equatiormdiscussed in Chapter 2. We observe that for p � 0 we have

the sequences

_.i+cP)l(M) ... 0

Since 0, we may for p,q � 0 define the vector spaces

— (Kernel

These spaces measure the degree of unsolvability of our generalised

Cauchy—Rienann equations. Like the de Rham groups they turn out to be

Important invariants though now they reflect analytic rather than

topological properties of a complex manifold. We return to these matters

In the next Chapter.

Example 1. Let cz e B Then c*AB

Indeed by properties 3 and 6 we have + 0.

Hence nAB

We conclude this section by extending to holomorphic vector

bundle valued differential forms. Suppose that E is a holomorphic
vector bundle on M. For r,s � 0, we let denote the complex

r,s , r,s
vector bundle A (M) and C (M,E) denote the space of C sections

r,s , —of A (H) •E. We claim that for r,s � extends to a map

aE:

To construct we work locally. Suppose that EIU -* U is a
trivialisation of E over the open subset U of H and that we are given
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a complex analytic coordinate system on U. Given a E set

— slU. We have

—
a 1,..

where
9'd

u We define by

a l,...,p.

We must check that our definition of does not depend on our choices

of trivialisation of E. Suppose that

E and let denote the transition function

associated to the trivialisations and On U n V we have

su euvsv.

Since is analytic we see that 0, j — l,...,m, and so

— Hence aEs is a well defined section of

If E is an anti—holomorphic vector bundle on M we may similarly

define an operator DE: 4. Cr+l,s(M,E), r,s 0. Indeed,

using conjugation we may define aEq (v), where

conjugation is induced from the conjugation map

S: (see Exercise 2, §4).

In the sequel we usually drop the subscripts from and

and just write a and

Properties of the operators a, on bundle valued forms. We shall

only state properties for those for a follow by conjugation.

In what follows we assume that E is a holomorphic vector bundle on H.

—2
i. a —o.

2. Kernel is the space of
holomorphic sections of ,PTM*GE. In particular,

Kernel 5: + C°'1(M,E) is the space of holomorphic sections

of E.

3. 5 conmiutes with contractions on finite tensor products of

tensor, exterior and syimnetric powers of E and E*. For example, if
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• and > q,

C is induced from the contraction C:

4. commutes with contractions between the bundles and

exterior powers of the holomorphic tangent bundle of M. That is, if

• and r � p, we have — C(ä$) e CTPI5(M).

These properties all follow immediately from our local description

of 5.

As a consequence of property 1 we have for p � 0 the sequences

—a-' •.. _.LCP,m(M,E)

and the corresponding vector spaces

— (Kernel

E be a holomorphic vector bundle and J denote the
complex structure on E. Then SJ — 0 and so 3 is a holomorphic section of

L(E,E). That — 0 is a consequence of the fact that locally J is a

constant section. For the same reason SI — 0, where I is the identity

section.

3. Let X Y Then [X,Y] — — We shall

give an invariant proof of this identity using property 4 above. Let

f then

— <d<df,Y>,X — <d<df,X>.Y>

— <a<af,Y>,X> —

— — + (<Sf,CxaY> —

<df,(x3Y proving our assertion.

Exercises.

1. starting with the local description of S (property 5), prove

directly that if f is a holomorphic map then (property 4).
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Deduce that may be defined invariantly on complex differential forms

on a complex manifold.

2. Let E be a holomorphic Vector bundle on M. Suppose a

f Prove 5(fs) — + More generally, if Cr,s(M),

prove that +

§8. The Dolbeault-Grothendieck Lensiia.

This section is devoted to the proof of an important result that

plays the same r6le in the theory of complex manifolds as the

lemma does in the cohomology of differential manifolds.

Theorem 5.8.1. (Dotheault-Grothendleck lemma). Let D be an

open polydisc in and suppose that f satisfies 0

(p,q 0). Then if W is any relatively compact open subset of D there

exists u s such that au f on W.

Proof. The theorem is proved inductively. The kth. step of

the induction is to prove the theorem true if f is independent of

The theorem is trivially true when k — 0 and the theorem

is obtained for k — n.

Let us assume that the theorem has been proved for k — 1 and that
f does not involve We may write f uniquely in the form

f

where g h and g and h are independent of

Set g
—

g13dz1dz3. Since — 0, we have

0, j > k

We now find a solution of the equation

—

To do this suppose D — II C and choose • C(Dk) such that

— 1 on a neighbourhood V' of Define
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G13(z) — (2111)_i
J

-
f

..,zkl,t,zk+l,...,zn)dtdt.

The second expression for C15 implies that e Theorem Al.6

implies that g15 on W' and, by (A), that 0, j > k.

Set C — G15dz1dz3. Then on W' we have — + h1, where h1 is

independent of Hence, on W', h—h1 — f — is independent

of Since 0, we may apply the inductive

hypothesis to find v e such that

v f on W. 0

Remark. it is easy to see, using bump functions, that we may

construct u E satisfying au f on W.

Theorem 5.8.1 is sufficient for the development of cohomology

theory in Chapter 6. However, we shall now prove a stronger version of

the Dolbeault—Grothendieck Lemma and obtain a particular case of a result

that holds on arbitrary Stein manifolds and to which we shall return in

Chapter 11.

Theorem 5.8.2. Let U be an open, not necessarily relatively

compact, polydiac in t° and suppose f satisfies = 0.

Then there exists u e such that au — f. Here we assume p,q � 0.

Proof. We divide the proof into two cases: q — 0, q 1.

Case 1. q — 0. Choose a sequence D1, j � 1, of relatively

compact open polydiscs in which have the same centres as U and which

satisfy:

A. c D
+1'

� 1 and B. U U.
I j�l

If u — and K c U, we define —

We shall construct inductively a sequence U1 satisfying

1. 3U1 f on some open neighbourhood of D1, j � 1.

2. _ujIü
<

j � 1.
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The existence of u1 follows from Theorem 5.8.1. Assume that we have

constructed u1,.. .,uk satisfying the conditions above. By Theorem 5.8.1,

there exists a such that f on an open neighbourhood

of 0k+l The difference — uk is holomorphic on an open neighbourhood

of since - uk) — I — I — 0 on an open neighbourhood of Dk.

Hence, if we take Taylor's expansion of the coefficients of at

the centre of D, we may find P a with polynomial coefficients,

such that

I

<

Now we define uk+l — P and see that uk+1 satisfies the required

conditions and so the inductive step is completed.

The sequence (u,K) has coefficients which converge uniformly on

each and so (uk) converges to a continuous (p,0)—form, u. Now

u u1 + (uj+i —uj) and only finitely many of the differences

u1+i are not holomorphic on any given Dk. Hence, by Corollary 2.1.8,

u must be C°' on each Dk and so u C1'°(D). Finally, on each Dk,

u — Uk + ak, ak A(Dk), and so auk — I on each Dk. Hence f

on D.

Case 2. q 1. We choose a sequence D1 of polydiscs in

satisfying the conditions of Case 1. We shall construct inductively a

sequence a such that

1. I — on some open neighbourhood of j � 1.

2. uj+jIDiuj,J�1.

The existence of u1 follows from Theorem 5.8.1. Suppose we have

constructed u1,.. . satisfying the conditions above. By Theorem 5.8.1,
there exists such that — I on some open neighbour-
hood of Now _uk) 0 on some open neighbourhood of Dk and

so, since q � 1, another application of Theorem 5.8.1 implies that there

exists $ a such that —uk — 5$ on some open neighbourhood

W of Dk. Define Uk+l
— —

Then, since
52

— 0, we see that

Suk+l — — I on an open neighbourhood of 0k+1 and

uk+lIDk — — This completes the inductive step and we now

define u by uID1 — U1, j �l. Clearly Su f. 0



41.

Remarks. Both Theorems 5.8.1 and 5.8.2 hold for

forms. The proofs are identical to those given above.

Corollary 5.8.3. Every open polydiec in is a Cousin I, II, A

and B domain. In particular, ci° is a Cousin I, II, A and B domain.

Proof. Propositions 2.7.1 and 2.7.3. 0

Corollary 5.8.4. Every holomorphic line bundle on an open

polydisc in is holomorphically trivial.

Proof. Let + be the transition functions for the

holomorphic line bundle L on the polydisc TI. Then 4ik for all

i, j, k and so is the data for a Cousin B problem on TI. By

Corollary 5.8.3, there exists ai such that aj/aj. But,

by §5 of Chapter 1, this implies that L is holomorphically trivial. 0

Exercises.

1. Suppose p,q � 0 and m > 1. Show that if f e and 5f 0

then there exists u such that f.

2. Show that the open Euclidean disc E(z;r) in is a Couain I, II,

A and B domain (Use Exercise 1, §1, Chapter 2).

§9. Holomorphjc vector bundles on compact complex manifolds.

In this section we present a number of important examples of

holomorphic vector bundles on compact complex manifolds. We shall pay

particular attention to the spaces of holomorphic sections of such

bundles which, by the theory of §7, may be represented as the kernel of

the i—operator.

We Start by proving an elementary special case of a rather

general finiteness theorem that we return to in Chapter 7.

Theorem 5.9.1. Let E be a holomorphic vector bundle on the

compact complex manifold M. Then <

Proof. Suppose that we are given a finite open cover

(U1: of H such that over each U1, E has a holomorphic

trivialisation ei: + U1 x p — dim(E). Suppose also that
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is an open refinement of the cover such that for all i, V1 is a

relatively compact subset of Given a we let sj: -,

denote the local representative of s on

If I U denotes the standard Euclidean norm on we may define

a norm
I I on by

181 — Is U 8

i—i i

Observe that < since is compact. We shall prove that the
I

closed unit ball B in the normed vector space I) is compact. This

implies that I) is locally compact and hence finite dimensional by

F. Riesz' theorem (for an elementary proof of theorem see Field

[1; page 54J). Suppose then that (si) is a sequence in B. Given I,

1 5 i S r, we have corresponding sequences c A(V1,U9) of local

representatives. By our definition of
I I, it is clear that for all I

we have

5 1, z V1, j 1.

In particular the sequence (4) is bounded on V1 and so by Montel's

theorem (Theorem 2.1.9) we may find a subsequence of (5i) which

converges uniformly on V1. Proceeding inducltvely, suppose that we

have constructed a subsequence of (s-i) which converges

uniformly on V1 u ... uVk. Applying Montel's theorem we may find a

subsequence (t(k+l)3) of which converges uniformly on

V1 a subsequence

(ti) of (si) which converges uniformly on V1 u... UVr H. Hence B is

sequentially compact and therefore compact. U

Holomorphic vector bundles on projective space.

To each point t P°(g) is naturally associated a complex line

This suggests that we should be able to construct a complex

line bundle over P°(g) whose fibre at the point is the line

c We start this subsection by constructing this "tautological"

line bundle (see also Exercise 2, §3, Chapter 4).
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Let L C x denote the set ((Z,z): z e The

projection on induces a projection in L Recalling §7 of
n+lChapter 4, we see that L is blown up at the origin and so, in

particular, L has the structure of a complex manifold of dimension n + 1

and iT is holomorphic. We claim that L has the natural structure of a

holomorphic line bundle over For this we have only to observe

that the maps L1U1 -+ UI x defined by

((z0,. ..,zn),ai)

define holomorphic trivialisations for L. The corresponding transition

functions + CL(l,cl) e are given by

zi/zj.

We call the holomorphic line bundle L the tautclogical or universal
TIline bundle on P 01).

We let H denote the dual bundle L* of L. For reasons that will

soon become clear we call H the hyperplane section bundle of For

p 72 we define

H1' ®1'H, p � 0

— p � 0

Note that the transition functions for H1' are given by

The next proposition gives an indication of the important r&le

that the hyperplane section bundle plays in projective algebraic

geometry and also indicates an important bridge that exists between

complex analysis and algebra.

Proposition 5.9.2. For p � 0, is canonically isomorphic

to the space of homogeneous polynomials of degree p on

For p < 0, consists of the zero section.

Proof. Suppose p � 0. If s we let s1: -. denote

the local representatives of a relative to the standard trivialisation

of For 0 � i � n we have S1 and so
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n+l
Hence we may define the holomorphic map S: \ by

— 0. Since the are homogeneous of

degree zero, S is homogeneous of degree p. By Hartog's theorem, S

extends to as an analytic function which we continue to denote by S.

Since S is homogeneous of degree p, we see by taking Taylor's series at

the origin of that S must be a homogeneous polynomial of degree p.

Hence we have defined a map of into p � 0. If

s define Sj s/4, i — 0,... ,n. The are the local

representatives of a holomorphic section of Since the maps between

and are clearly inverses of one another we have shown

that is canonically isomorphic to

We leave the case p < 0 as an exercise for the reader which makes

use of the isomorphism ct. 0

As a special case of the proposition we see that if p — 1, sect-

ions of H correspond to linear functionals on In particular the

zero sets of such sections are hyperplanes in

Next we show that there exist natural exact sequences

o —+ —p (n-f-l)H

TP —p (n+l)L 0

Here (n+l)H denotes the (n+l)—fold direct sum of H; similarly for (n+l)L.

Since the second sequence is the dual of the first it suffices to

construct the first sequence. First, however, we need to prove some

results about holomorphic vector fields on projective space.

n+l n
Let q: 0 \{0} P (cI) denote the quotient map. Suppose X is

n+l
a vector field on \{0) which is homogeneous of degree 1:

X(Xv) — AX(v), A€ vs Then Is well—defined as a

vector field on Indeed, since q q.A, Dq — A

Hence - = X(Av), \{0)

proving that is well—defined on We define the Euler vector
n+l

ft.eld E on \ (0} by

E(z0,...,z)
—

zi 3/az1



45.

Certainly E is homogeneous of degree 1 and so is a well—defined

holomorphic vector field on Since E(z) £ where L5 denotes

the line through z and 0, we see that 0. Let be a

basis of Since {s0(z),. . spans for all a P°(E),

to define a vector bundle morphism (n+l)H it is enough to 8pecify

the map on holomorphic sections of (n+l)H. So suppose

We define £ by

where we have used the identification between sections of N and linear
n+l

functionals on . Now the kernel of is the image of the map

(n+1)H

defined on sections by T(l)(z) — where z0,...,z0 denote the

coordinate functionals. In view of the fact that T(l) — we see that

the "Euler sequence"

(n+l)H —L ÷ 0

is exact.

Taking the highest exterior power of the Euler sequence and

using the result of Exercise 5, §1, we see that

Taking duals, we deduce that

AOTPO* H°1.

In the sequel we call the nth. exterior power of the cotangent

bundle of an n—dimensional complex manifold H the bundle of

M and denote it by K(M). Thus we have shown that — As

we shall see later the canonical bundle plays a central rle in the

theory of compact complex manifolds.
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If X is a closed complex submanifold of we may pull back

(restrict) the hyperplane section bundle of P°(U) to X. We denote the

resulting bundle on X by We remark that the zero sets of

holomorphic sections of Mx are intersections of X with hyperplanes in

We refer to Mx as the hyperplane section bundle of X.

Divisors, holomorphic line bundles and linear systems.

Recall from §6 of Chapter 4 that the group 0(M) of divisors on a

complex manifold H is the set of (locally finite) formal sums

%"a' where the are integers and the are Irreducible analytic
atA
hypersurfaces of H. Here we suppose that M Is compact and so we may

assume that A is finite. By Theorem 4.6.11 every divisor on M may be

specified by a Cartier divisor {(U1,d1): i s I) —

Cd1 M*(U1): d1dj1 t A*(Uij)) and two Cartier divisors {(u1,d1): i e I)

and {(V1,e1): j i} determine the same element of 0(14) if and only if
—l

djej aV) for all i e I, 3 s J.

Before stating the next proposition we recall from Chapter 1 that

the set HLB(M) of isomorphism classes of holomorphic line bundles on a

complex manifold H has the notural structure of an Abelian group with

composition defined by tensor product and inverse by dual. As in

Chapter 1, we shall use the abbreviated notations E.F and E' for EeF

and E* respectively. As usual will denote the trivial holomorphic line

bundle.

Proposition 5.9.3. There is a canonical group homomorphism

[ ]: 0(M) HLB(M)

Proof. Let d — ((U1,d1): I s I} E 0(M). We let [d] denote the

holomorphic line bundle on H with transition functions

+ CL(l,G) defined by — d1/d1. We must show that [d)

depends only on d and not on our particular representation of d as a

Cartier divisor. Suppose then that I s I) also defines the
divisor d. The corresponding transition functions are given by

But now a A*(U1) and so, setting = we

have
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i,j e I.

Hence define isomorphic holomorphic line bundles (see Chapter 1,

§5). The fact that [ J is a group homomorphism is immediate from our

definition of £ ] using Cartier divisors. 0

Remark. As a consequence of Proposition 5.9.3 we see that if

d,d' V(M), then [d+d'] — [d)[d'] and [d]*

Proposition 5.9.4. The sequence

M*(M) div)v(M)

exact.

Proof. Let d — {(Uj,di): e V(M) and suppose that N] —

Then there exist c such that a1@11 where d1/d1 are

the transition functions for [d]. Hence a1 and so

aidj — a1d1 on U11. Therefore we may define m t M*(M) by a1d1.

Clearly div(m) — d since div(ajdj) — div(d1), i s I. Obviously

[div(m)) — for all in N*(M) and so we have shown that
div(M*(M)) — ]. 0

Definition 5.9.5. Let d,d' V(M). We say that d and d' are

linearly equivalent if d —d' is the divisor of a meromorphic function.

We denote the group of linear equivalence classes of divisors on H by

L(M). Thus L(H) — O(M)/div(M*(M)). Given d V(D), we let L(d) denote

the set of all divisors on M linearly equivalent to d.

Next we wish to define mer'omorphic sections of a holotnorphic

line bundle. Suppose that E e HLB(M) has transition functions

We say that a family mi E M(U1), I I, defines a

meromorphic section of E if 811m1 inj M(Uij). i.i I. We let M(E)

denote the space of meromorphic sections of E and M*(E) denote the space

of non—zero meromorphic sections of E.

Remark. The group law in HLB(M) induces corresponding maps on

spaces of sections. For example, if E HLB(M) and s M*(E) has local

representatives s to be the sect-

ion with local representatives (61)1 — This construction defines

an inversion map N*(E) Similarly if E,F HLB(M) and
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E,F HLB(M) and (s,t) M(E) x M(F) we may define the composition

s.t s M(E.F) by s.t — set.

Proposition 5.9.6. Let E HLB(M) and suppose that M*(E) # 0.
We have a natural group homemorphism dlv: M*(E) V(M) satisfying

[div(s)) — E, a M*(E).

Proof. Let E have transition functions -.. (1' and

s s N*(E) have corresponding local representatives Sj M*(Ui). Since

Ojj5j we have c and so we may define div(s) to be

the Cattier divisor I i}. Clearly div(s) depends only on 8

and not on our particular choice of transition functions for E. It is

immediate from our local description of div(s) that ldlv(s)] — E.

Finally, dlv: M*(E) 0(M) is obviously a group homomorphism. C]

Remark. We call div(s) the divisor of the section s.

Example 1. Let in Then deg(div(m)) — 0 (Example 3,

§6, Chapter 4). Suppose that E is a holomorphic line bundle on

and s,t c M*(E). Since we see at once that

deg(div(s)) — deg(div(t)). Hence we may define the degree of E, deg(E),

to be the degree of any non—trivial meromorphic section of E. Clearly,

deg:
+

is a homomorphism. See also Proposition 1.5.7.

We shall give another interpretation of the degree map in §3,

Chapter 6.

Proposition 5.9.7. Let d e 0(M). Then

1. There exists s(d) M*((d]) such that dlv(s(d)) d. The

section s(d) is unique up to multiplication by elements of

2. div(M*([d])) L(d). Moreover the map dlv: N*(tdJ) L(d)

induces a bijection of L(d) with

Proof. The proof of 1 is the same as the proof of Proposition

1.5.4. Let us prove part 2. Suppose that s M*([dJ). Then

[djv(s)) [d) and so s(d)4s e M*(M). Therefore, div(s) L(d).

Conversely, if d' L(d), there exists m E M*(M) such that d—d' — dlv(m).
Hence [d] [8'] and s(d') determines a section of [d] with divisor

d—div(m) L(d). The remaining assertion of part 2 is immediate

from part 1. 0



Proposition 5.9.8. A holomorphic line bundle E lies in the

image of C ]: V(H) ÷ HLB(M) if and only if E has a non—trivial meroniorphic

section.

Proof. Immediate from proposition 5.9.6 and 5.9.7. 0

Remark. Proposition 5.9.8 shows that the study of divisors on H

is closely related to the problem of finding which holosorphic line bundles

on a complex manifold admit non—trivial meromorphic sections. Two

fundamental results that we prove later show that if H is projective or

Stein then every holomorphic vector bundle on M admits a non—trivial

meromorphic section. It must be stressed that an arbitrary complex

manifold of dimension greater than 1 need not have any holomorphic line

bundles which admit meromorphic sections (equivalently, the manifold need

not have any divisors).

Definition 5.9.9. We say that a divisor d nc&.Va

effective or poeitive � 0, a c A. We write d �

Suppose that d c V(M). We let L(d) denote the vector subspace of

M(M) defined by

m E L(d) 1ff d + div(m) � 0 or m 0.

Proposition 5.9.10. The vector space L(d) is isomorphic to

In particular <

Proof. By Proposition 5.9.7, there exists s c M*({dJ) such that

div(s) — d. Let y: M(M) -, M([dJ) denote the map defined by y(m) s.m,

mc M(M). Now div(y(m)) — div(s) + div(m) and so if in e L(d) we see

that � 0. That is, y(m) e The map y clearly

restricts to a linear isomorphism between L(d) and with inverse

defined by — m c 0

Remarks.

1. It follows from Proposition 5.9.7, part 1, that the isomorphism

between L(d) and n(CdJ) is uniquely determined by d up to scalar

multiplication by elements of
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2. It follow8 from Proposition 5.9.10 that every non—zero mero—

morphic function on H can be expressed as a quotient of holomorphic

sections of some holomorphic line bundle on H. Indeed, if in E M*(M)

let — min(0,div(in)) denote the polar divisor of a and choose

such that dlv(s) — By Proposition 5.9.10 the map

+ L(_Pm) defined by — t/s is an isomorphism. But

a L(_Pm) and so in can be written as a quotient of holomorphic sections

of the line bundle

Example 2. Let a E Assuming Chow's theorem, we may

write a as a quotient P/Q, where P and Q are homogeneous polynomials of

the same degree. If the coumion degree of P and Q is d, we see from

Proposition 5.9.2, that a iS the quotient of the holomorphic sections
of determined by P and Q.

Given d a V(M), we let E(d) denote the set of all effective
divisors linearly equivalent to d. The map dlv: + E(d) induces

an isomorphism between E(d) and Hence for every divisor d on
H we have natural isomorphisms

E(d) P(L(d))

A family E of effective divisors on H is called a linear By8tem

of diviaor8 on H if there exists a holomorphic line bundle E on H and a

(projective) linear subapace V of such that E — div(V). We

say that I is a oornpl.ete linear eyatem if I — for some

E a HLB(M).

If I is the linear system of divisors on H corresponding to the

subspace V of we define the dimension of I, dim(E). to be

We see that if — n, then I is parametrized by
and we may write I — t

Let d a V(H). If V is a linear subspace of P(Q([dJ)), then

div(V) is a linear system on H. In case V — we see that
dim(E) — — 1 — — 1 and the linear system equals
E(d). By the remarks above it is clear that linear systems on H

always correspond to a subspace of E(d) for some divisor d on H and that

a linear system is complete if and only if it equals E(d) for some

divisor d on H.
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Suppose E t a is a linear system on M. We define

the baee 100UB BE of E to be the analytic set

B - dl.
E

Let be linearly independent in P°(ff). Then

n

BE — 0 d
ti

Since E is a linear system, there exists L a HLB(M) and a linear sub—

space V of such that E — div(V). Let (80,•••,8n) be a basis

for V then we clearly have

BE — fl
j—o

Suppose BE — 0. Then for each x a M, the (n+l)—tuple

(eO(x),...,sm(x)) defines a unique point in Indeed, jf

. . and are local representations of with

respect to trlvialisaions over and respectively, we see that

0 p � n, x a , where CA*(Uij). Since

Ojj(x) 0, — a Hence

provided 0, we have a holomorphic map P: M defined by

P(x) = (s°(x) ,s°(x)), x M.

It is of great interest to know whether a given holomorphic line

bundle L on M has "enough" holomorphic sections to determine an
embedding of N in projective space. Notice that if X is a complex

submanifold of Hx denotes the hyperplane section bundle of P°(0)
restricted to X and E denotes the complete linear system corresponding
to then BE — 0 and the corresponding map P: X is an

embedding onto the submanifold X.

In conclusion, we see that the theory of divisors and Inero—
morphic functions on a compact complex manifold is intimately related

with the theory of holomorphic line bundles and their holomorphic and

meromorphic sections. We mention the following basic problems:

1. The existence of non—trivial meromorphic sections of a given

holomorphic line bundle.
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2. Relations between the dimension of the space of holomorphic

sections of a holomorphic line bundle L on H and other invariants of L

and H.

3. Conditions for the existence of sufficiently many holomorphic

sections of a holomorphic line bundle L on H for it to determine an

embedding of H in projective space.

Geometric genus.

Let H be a compact complex manifold of dimension m and let K(M)

denote the canonical bundle A'5T11* of H. We define the geometric genus
Pg(M) of M to be

The geometric genus is obviously a biholomorphic invariant.

Proposition 5.9.11. The geometric genus is invariant under

blowing ups with non—singular centres.

Proof. Let it: M M denote the blow—up of H with centre p and
exceptional variety E. We have an induced map n*: +

Since it restricts to a biholomorphic map between H \ E and M \ {p} we

see by uniqueness of analytic continuation that is injective. On the

other hand if 41 we may define

41
extends to a holomorphic section of K(M) which we

denote by Clearly 1T*1T*41 — 41, 41 e and so it* is a linear

isomorphism. Hence Pg(M) The proof for general non—singular

centres is similar, using the second Riemann removable singularities

theorem (Exercise 5, Chapter 4) and we leave details to the reader. B

Remark. The proof given for proposition 5.9.11 also shows that

the numbers p > 0, are also invariant under blowings up

with non—singular centres.

The geometric genus is in fact a bimeromorphic invariant.
Whilst we shall not define bimeromorphic maps here (see Ueno [1] for

details and references) we point Out that bimeromorphic maps are the
complex analytic analogue of the birational maps of algebraic geometry.

Moreover, if two complex analytic BUrfaCeS are bimeromorphic then one

is obtained from the other by a finite sequence of blow ups and
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blow downs (see ICodaira Cl]). This result is, however, false in

higher dimensions. We refer to Hartshorne [1 ; pages 412—414] for

a discussion of the higher dimensional case and references. Other

bimeromorphic invariants related to the geometric genus are the

plutera defined by — r > 0. The proof

that the plurigenera are invariant under blowing ups is similar to that

of Proposition 5.9.11.

Holomorphic line bundles on complex tori and theta functions.

We conclude this section by indicating the role of holoeorphic

line bundles and their sections in the study of meromorphic functions

on complex tori. For further details, proofs and references the reader

may consult Cornalba [1], Griffiths and Harris [1], Swinnerton—Dyer Cl]

and Weil [lJ.

Let T — be an n—dimensional complex torus with period

lattice A and ÷ T denote the quotient map. If L is a holomorphic

line bundle on T then 1r*L is a holomorphic line bundle on (As usual,

1T*L denotes the pull—back of the bundle L by iT — see the exercises at

the end of §5, Chapter 1). By Corollary 5.8.4, every holomorphic line

bundle on is holomorphically trivial and so ¶*L X

Fixing an isomorphism of 1T*L with we may regard L as the quotient of

x f under the identifications

(z,v) (z+X,fx(z)v), Z E V X It,

where the functions C satisfy the relations

— Z C A

A (holomorphic) section of L corresponds to a a—valued (holoinorphic)
function Gon which satisfies the functional equation

O(z+X) — Z C A A.

Such functions are called theta functions (relative to the family
The quotient of any two non—zero theta functions defines a A—periodic
meromorphic function on an and hence a meromorphic function on T.
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Conversely, by Remark 2 following Proposition 5.9.10, every meromorphic

function on T may be represented as the quotient of two theta functions

(associated to the same family The study of meromorphic functions

on T may therefore be reduced to the study of theta functions on

In fact for n > 1, this approach to the theory of meromorphic functions

on complex tori is much more effective than any direct attempt to

construct meromorphic functions as we did in case n 1 with the

Weierstrass p—function and its derivative.

Suppose that ci, are isomorphiem with Then there

exists $ A*(e") such that B = •.ci. If a, B correspond to the families
A A}, (BA: A A) respectively, then it is easily verified that

and are related by

— z A e A.

By suitable choice of • we might hope to put the functions into a

"standard" form. This amounts to obtaining a classification of HLB(T).

Example 3. The trivial line bundle on T is defined by the family

E 1, A A. Given we may write $ — exp(f), for some

f The family gX(z) — exp(f(z+A) — f(z)) also defines the trivial

line bundle on T. Siace$(z+A) — gA(z)$(z), we see that $ is a theta

function for thia family. Any theta function of this type is called a

trivial theta function by virtue of the fact that it corresponds to a

constant (non-zero) section of the trivial holomorphic line bundle on T.
Of special interest to us will be the case when f(z) —

We have gA(z) — exp(2az + zA2 + bA) and the corresponding trivial theta
function is exp(az2 + bz + c).

If L is a holomorphic line bundle on I it is natural to try to

define L by functions where fA(z) — expF(z,A) and F(z,A) is

affine linear in z. Suppose L is defined by a family of functions of

this type. The relations (A) impose conditions on the F(z,A) and,

multiplying by suitable non—zero analytic functions, it is not hard to

show that the can be put in the form

fA(z) — m(A)exp(1TH(z,A) + ½irH(A,A))
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where H is an Hermitian form whose imaginary part E is integer valued on

A x A and m: A + S1 c satisfies m(X)m(p) m(X+U)exp(1TiE(A,ij)) for

all A,ii e A.

We denote the line bundle on T corresponding to H and m by

L(H,m). By a theorem of Apell and Humbert every holomorphic line bundle

on T is isomorphic to a line bundle of the form L(H,m). Moreover,

L(H1,m1) iff H1 H2 and m1 — m2. The proof of this result

may be found in the references. Here we only remark that L(H1,m1) and

L(H2,m2) are isomorphic as line bundles iff H1 H2.

A holomorphic section of L(H,m) corresponds to a theta function

O which satisfies the functional equation

O(z+X) + ½n11(A,A))O(z)

Examp)e 4. (The Weierstrass a-function). We follow the

notation and assumptions of §4 of Chapter 4. Thus we assume n 1 and

letp(z) denote the Weierstrass elliptic function associated to the

lattice L generated by Integrating p we obtain the Welerstrass

zeta function

C(z) - - -
+

(the prime denotes that the sum is over non—zero elements of L).

— is constant, not necessarily zero, for all w L and we

define

+w1) — +w2) — C(z) . .. . (B)

As in the proof of part 3 of Theorem 4.4.2, the integral of round a

period parallelogram for L equals 2n1 —
—

(Legendre's

relation).

Exponentiating the integral of we obtain a (single valued)

analytic function called the Weierstrass a—function. We have

i
0(z) exp(log z

+ J
—t )dt)

0

'rlr(Z+U) ( z z2
2ii

2w
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Exponentiating the integrals of the relations (B) above, substituting

Z
—

and using the fact that a is an odd function which does

not vanish at we find that

a(z+w) (—1)°a(z)exp(ri(z+½w)),

where w — n n2 and n1,n2 c 7Z.

Hence is a theta function on corresponding to the family

E A*(E): s L} defined by

— L.

However, the functions are not in the standard form that we gave above.

Recall from §4 of Chapter 4 that the lattice L has Riemann form defined

by A(y,z) where S Associated to A we have the

hermitian form H defined by H(y,z) The imaginary part of H

equals A and is integer valued on LxL. We now define

— + ¼1TH(u,w)), u L.

Set a — Ti1) and let 00(z) denote the trivial theta

function exp(az2). The reader may verify, using Legendre's relation,

that if we define — e0(z)a(z), then — Hence

we have put the Weierstrass a—function in standard form. Set I

Because the holomorphic line bundle on I associated to the family
actually generates HLB(T) we are able to give a particularly simple
description of meromorphic functions on I. Thus if

d

— ki V(T), deg(d) — 0 and
kl

— e, we may define

md — T1 a(z—ak) , where 1T(ak) 2k' k l,...,n, and
k—i

nkak 0.

It is easily verified that is L—elliptlc and defines a meromorphic

function on I with divisor d.

The theory of theta functions of more than 1 complex variable
is highly developed and we conclude by mentioning just two important
results:
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1. If there exists L(H,m) HLB(T) such that H is positive definite

(that is, H is associated to a Rietnann form), then the complete linear

system defined by L(3H,m) — L(H,m)3 gives a projective embedding of T.

2. The dimension of can be computed and is equal to

where E is the imaginary part of H and the determinant is computed
relative to any basis of the period lattice of T.

Exercises.

1. Let a be a meromorphic section of the holomorphic line bundle E.

Define the zero and pole sets Z(s), P(s) of a and show that a is

holomorphic if and only if P(x) 0.

2. Let p 1 and E denote the complete linear system on

corresponding to Show that

a) dim(E) — — 1.

b) The base locus of E is empty.

c) E determines an embedding of P°(ct) in PN(e), N — dim(E)

(The "p—tuple embedding").

(In case n — 2, p — 2, we obtain an embedding of in P5(e). The

corresponding surface in is called the Veroneae surface).

3. Let H be a holotnorphic line bundle on the complex manifold H.

Show that, as vector spaces, M(E) M(M), provided that E admits a

non—trivial meromorphic section.

4. Suppose V is a smooth analytic hypersurface in the compact complex
manifold M (that is, V is a closed submanifold of H of codiinension 1).
Let Nv — (Tt4jv)/TV denote the normal bundle of V. Show that

a) viszeroonTV*}.

b) [—VJIV.

c) K(V) (K(M)a[VJ)IV

(Hints: For b), show that the local defining equations for V determine

a non—zero holomorphic section of for c), use the exact
sequence 0 TW'IV 0 and exercise 5, §1).
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5. Suppose that c A t A, define the holomorphic line

bundle L on en/A. Show that respectively define the
complex line bundles L*, on

6. Let A be a lattice in and H be an heraitian form whose imag-

inary part is integer valued on A xA. Show that L(H,l) is a holomorphic

line bundle on c/ft. Now set L — L(H,l). Show that a function

6: •+ determines a section of L*at* if and only if for all z e en

we have

B(z+A) — exp(—n(2Re(H(z,A)) + H(A,A))O(z), A e A.

Deduce that •(z) — determines a nowhere vanishing smooth

section of L*et* (We may think of • as determining a canonical

hermitian form on L — L(H,l)).

§10. Pseudoconvexlvity and Stein manifolds.

In this section we shall show how some of the pseudoconvexivity
definitions we discussed in Chapter 2 may be generalised to arbitrary
non—compact complex manifolds.

We start with a few remarks about Hernitian forms on an
rn—dimensional complex vector space E. Recall that H: E xE e is said
to be an Nennitian forei if

1. H(x,y) H(y,x), x,y e E.

2. H(ax1+bx2,y) — aH(x1,y) +bH(x2,y), a,b e (1, x1,x2,y E.

We say that H is positive definite if, in addition,

3. H(x,x) > 0, x 0.

Conditions 1 and 2 imply that H is conjugate complex linear in the

second variable. Consequently, an Hermitian form may be regarded as a
complex bilinear map H: E x + satisfying the conjugate syninetry
condition 1. Since the space of complex bilinear maps of E to

is naturally isomerphic to we may also regard H as lying in

E*.E*. Thus, relative to a basis of E, we may write H in coordinates as
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H —

"i—i

The conjugate symmetry condition amounts to requiring that the matrix

be Hermitian. That is, 1 i, j � a.

Next observe that If we regard H as lying in

the conjugate symmetry condition amounts to requiring that

H —H (conjugate the form

Finally note that since L(E,E*), we may regard H as an

element of In this cage conjugate symmetry amounts to H

Recall that if we choose a complex basis for E and let H have

matrix relative to this basis, then the integers

n(N) — number of negative elgenvalues of

z(H) number of zero eigenvalues of

p(H) — number of positive eigenvalues of [his],

are invariants of H which do not depend on the choice of basis for E.

Definition 5.10.1. Let M be a complex manifold. An Hermitian

form on M is a section H of Th* aflf* such that H(x) is an Hermitian

form on for all x e N.

Remark. We may equivalently define an Hermitian form on H to be

a (1,1)—form H satisfying = —H.

Definition 5.10.2. Let N be a comp1.ex manifold and

The Levi for,n of 4 is the (1,1)—form defined by

L($) —

Since — we see that L(4) is an Hermitian form on

M. In local coordinates,

L(4) —

i,j—l

and go is an invariant version of the Levi form we discussed in

Chapter 2.
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Suppose now that H is a relatively compact domain in the

rn—dimensional complex manifold and that H has C2 boundary 3M. We say

that $ a is a defining function for H if

1.

2. 3M •_l(0)

3.

Given a defining function 4 for M we may define the holomorphie
tangent space TX3M to 3M at x by TX3M Iv a TAM: d4,(x)(v) = 0}. Set

T3M - U T3H.
xa3M X

It is straightforward to verify that T3M is an (m—l)—dimensional complex

vector bundle which is defined independently of choices of defining

function for M (Use Lemmas 2.5.1, 2.5.7).

Given x 3M, we set and define

n(x) n(L(4)(x))

z(x) —

p(x) — p(L($)(x)).

Clearly n(x) + z(x) + p(x) rn—i and it is a straightforward exercise

to verify that n(x), z(x) and p(x) depend only on x a 3M and not the

choice of defining function q, (see §5, Chapter 2).

Definition 5.10.3. Let H be a relatively compact dothain of the
2complex manifold H and assume that M has C boundary. Suppose that H

has defining function $. Then we say that H is q-p8eud000flVeX

(respectively, strictly q—paeudoconvex) if for all x a 3M we have

n(x) � q (respectively, n(x) + z(x) � q).

Remark. As in Proposition 2.5.12, we may show that q-pseudo—

convexivity is a local property of the boundary.
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Examp'e 1. Let 0 be an L.p. (respectively, s.L.p.) domain in

Then 0 is 0—pseudoconvex (respectively, strictly 0—pseudoconvex).

Remark. In the sequel we shall always refer to 0—pseudoconvex

(respectively, strictly 0—psuedoconvex) domains as L.p. (respectively,

s.L.p.) domains.

PropositIon 5.10.4. Let 14 be an s.L.p. domain in Then

there exists a C2 defining function • for M such that is
positive definite.

Proof. Same as the proofs of Propositions 2.5.5 and

Lema 2.5.11. 0

In Chapter 7 we shall prove the basic result of Grauert to the

effect that an a.L.p. domain is holoinorphically convex. However, an

s.L.p. domain need not be Stein.

Examples.

2. The unit Euclidean disc E(1) c is s.L.p. (take

— — 1). SuppO8e n > 1 and let H, denote the result of

blowing up E(l), at zero. Then 14 will be an s.L.p. domain in as

we may choose a defining function for H which is equal to $ on a

neighbourhood of in g which does not contain the exceptional variety

of the blowing up. However, 14 cannot be Stein as the exceptional

variety of the blowing up is a compact complex submanifold of H biholo—

morphic to In particular, we cannot separate points on

by holomorphic functions on H (Proposition 4.2.4).

3. Let L denote the universal line bundle on P0(e). Then L is
biholomorphic to blown up at zero. Hence, by example 2, there is
an s.L.p. neighbourhood of the zero section of L. More generally, if X

is any compact complex submanifold of then — Lix has an s.L.p.

neighbourhood of the zero section.

Motivated by example 2, we now give an important definition due

to Grauert [1].

DefInition 5.10.5. Let E be a holomorphic vector bundle on the

compact complex manifold M. We say that E is weakly negative if there
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is an s.L.p. neighbourhood of the zero section of E. We say that E is

bleakly positive if is weakly negative.

Remark. One of the main we prove in Chapter 7 is that

if a compact complex manifold N admits a weakly positive vector bundle

then N is algebraic.

Our definition of the q—pseudoconvexivity of a complex manifold

N depended on representing M as a domain in some larger complex

manifold. Our next aim is to present an intrinsic definition of

pseudoconvexivity.

Definition 5.10.6. Suppose that H is an rn—dimensional complex

manifold and let • C (H). We say that $ is strictly q-plurieubharTnonic

(abbreviated, strictly q—psh) if has at least m—q positive

eigenvalues at every point x of N.

Recall from §5, Chapter 2, that s C (N) is said to be an

exhaustion function for N if for all c IR,

(xc

is relatively compact subset of H.

Definition 5.10.7. A complex manifold N is said to be

q—ccsnpiete if there exists a strictly q—pah exhaustion function on N.

Remarks -

1. Clearly q—complete implies (q+l)—complete.

2. We often refer to 0—complete manifolds as being holomorphically

complete -

Theorem 5.10.8. Every Stein manifold is 0-complete.

Proof. Exactly the same as the proof of Theorem 2.5.20. IJ

Remark. We shall prove in Chapter 11 that every 0—complete

manifold is Stein.
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Next we wish to say a few words about the relationship between

q—pseudoconvexivity and q—completeness. Suppose that N is a domain In

and that M has C2 boundary and is Stein. Then it can be shown that

if H is q—paeudoconvex then M is q—complete (see Eastwood and Vigna

Suria [1]). We only remark here that if q 0 then the proof that

q—pseudoconvexivity implies q—completeness is similar to the proof of

Proposition 2.5.15 and makes use of the elementary fact that we can

find a Stein neighbourhood of in which embeds in the unit Euclidean

diac in some (Cf. Lemma 7.2.20). Conversely, it can be shown that

q—completeness impi lea q—pseudoconvexlvity.

In Chapter 11 we shall show that q—completeness implies

existence theorems for the a—operator. To be precise, we shall show that

if N is q—complete, E is a holomorphic vector bundle on S and

$ e Ct)s(M,E) is 5—closed then there exists such that

— $ provided that s � q+1, r � 0. In particular, if M is Stein

we can always solve the generalised Cauchy—Riemann equations on M.

Although it is not our intention to say very much here about

q—pseudoconvexivity or q—completeness in case q # 0, we remark that

q—pseudoconvexivity may be regarded as a measure of how far away a

domain is from being s.L.p. Moreover, the concept may be related to

extension problems in complex analysis. See, for example, Eastwood and

Vigna Suria [1] and Andreotti and Grauert (1]. We give one example to

show how we may construct q—complete spaces, q # 0.

Example 4. (see also Griffiths [1; Theorem H], Serre (1],

Simha El], Vesentini [1]).

Let H be a p—complete manifold and A(M). Set

Z — Then we claim that Y — M\Z is (p+q)—coinplete.

In particular if M is Stein and q — 0, Y is 0—complete and therefore

Stein by the result cited above. Of course, in this case it is easy to

verify directly that Y is holomorphically convex and therefore Stein as

fj1 a A('f).

Suppose $ is a strictly p—psh exhaustion function on N.

Choose a function g: IR -'R such that

1. g(t), g'(t), g"(t) > 0, t a
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2. g(t) t

q+l
2

3. onY.
i—i

q+l q+l
Set 0 gct' — log 1fi12. Since L(log 1f112) is positive

1=1

semi—definite with at most q positive eigenvalues we see easily that 0

is strictly (p+q)—psh on Y. It is sufficient to show that 0 is an

exhaustion function on Y. That is, (x E Y: 0(x) < c} is a relatively

compact subset of Y for all c JR. Suppose 0(x) < c. Certainly,

q+l
2 >

Consequently, c M\U, where U is an open neighbourhood of Z. On the

other hand

< ec

and so < ec Hence C Mc, C It follows that

is a relatively compact subset of Y.

Finally, we conclude this sbction with a few brief remarks about

the Bergman kernel function of a complex manifold. Given an

rn—dimensional complex manifold H, let

L2(M) {f j fAf <

H

Then L2(M) has the structure of a Hilbert apace with inner product

defined by (f,g)
— 'N As in §6, Chapter 2 we can construct a

Bergman kernel function for L2(M) and then defines a

smooth section of (cf. Proposition 2.6.6). If instead, we start

with an Hermitian metric on N and corresponding measure dX on H, we may
define L2(M) — {f s A(M): f IfI2dA < oo}. In this case we may show that
there exists a Bergman kernel function for L2(M) and that for
important examples Log will be a strictly q—psh exhaustion

function on H (cf. Proposition 2.6.8).
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CHAPTER 6. SHEAF THEORY

Introduction

In Section 1 of thi8 chapter we present the basic definitions and

constructions of sheaf theory with many motivating examples. In

section 2 we give an application of sheaf theory to prove the existence

and uniqueness of the envelope of holomorphy of a R.iemann domain. In

section 3 we define the sheaf cohomology groups of a sheaf of groups

over a paracompact space using fine resolutions. Amongst the most

important results we prove are Leray's theorem and the existence of a

canonical, natural isotnorphism between cohouiology and sheaf

cohomology. We conclude with a number of important examples and

computations involving the 1st. Chern class.

SI. Sheaves and presheaves

Our aim in this section is to develop the theory of sheaves and

show how it provides a unifying topological framework for the study of

a diverse range of structures on topological spaces. Our presentation

will be geared towards applications in complex analysis and the reader

may consult Godement El] or Tennison [1] for more extensive and general

expositions of the theory of sheaves.

Let X be a topological space with topology of open sets U.

Definition 6.1.1. A preaheaf of groups on X is a collection of

groups G(U), one for each U U, together with group homomorphisms

G(U) + G(V), defined for V,U U and V c U, such that

1. If U — 0, G(U) is the zero group.

2. Por all U U, is the identity.

3. For U,V,W U and W c V c U, we have

We usually denote the presheaf by or just G.

Remarks.

1. Replacing the word "group" everywhere by "set", "ring", "field",
"algebra", etc. we may define presheaves of sets, rings, fields, algebras,

etc. We shall assume these definitions in the sequel.
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2. The homomorphisms occuring in the definition are usually

called restriction In all our examples they will be

restriction maps and we therefore generally omit any explicit

specification.

As we shall soon see, many basic structures in analysis can be

formulated in terms of presheaves.

Examples.

1. For each U a 11, let C(U) denote the ring of continuous

functions on U. Given U,V a U, with V c U, define C(U) + C(V) to

be restriction of continuous functions on U to V. Then —

is a presheaf of rings on X: The presheaf of continuous a-valued

functions on X.

2. Let r be a ring with discrete topology. For each U a U, let

C(U,F) denote the ring of continuous F—valued functions on U. Defining

as restriction, V c U, the set is a presheaf of

rings on X: The preeheaf of iocaity constant r-vaiued functions on X.

3. Suppose X has the structure of a differential manifold. Let

ck(u) denote the ring of G—valued functions on U, U U, 1 � k <

Then is a presheaf of rings on X: The preeheaf of

il-valued function8 on X. We shall let Dx — denote the

preeheaf of C" (I-valued functions on X.

4. Suppose X has the structure of a complex manifold. We let

— denote the presheaf of analytic tI—valued functions on X.

In the sequel we usually refer to as the Oka pr'eeheaf of X. For each U

let S(U) denote the multiplicatively closed subset of A(U) consisting

of all analytic functions on U which do not vanish identically on any

component of U. Set 14(U) — A(U)S(U). That is, 14(U) is the quotient

ring of A(U) with respect to the multiplicative system S(U) (See Zariski

and Samuel [1; page 46] and observe that if U is connected 14(U) is just

the quotient field of A(U)). Then, defining as restriction,

— is a presheaf of rings on X: The preeheaf of meronorphic

functions on X.

5. Let Z be an analytic subset of the complex manifold X. For each

U a U, let Iz(U) — {f a A(U): fIZ O}. Then — is a
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preaheaf of ideals of That is, for each U U, 12(U) is an ideal

of A(U). We call the ideal preaheaf of Z.

6. Let E denote a holomorphic vector bundle over X. For each U U,

we let E(U) denote the space of holomorphic sections of E over U.

Each E(U) is an A(U)-inodule in the obvious way and the presheaf

E is thus an example of a preaheaf of Or-modules. We call

E the preeheaf of sections of E. In case E is a smooth, not

necessarily holoinorphic, vector bundle over X, we let

denote the presheaf of sections of E. Thus, E is an example of a

presheaf of and, of course, the construction works for any

differential manifold X.

Whilst a presheaf contains essentially all the information about a

particular structure on a topological apace, it is a large, seemingly

cumbersome, object. We now describe the process of "sheafification"

whereby out of every presheaf we can construct a topological space in

such a way that, for all important examples, no information is lost.

Let R — be a presheaf of rings on the topological space

X. Fix x E X. We define an equivalence relation on the rings R(U)

for which x s U. Suppose that U,V and f c R(U), g R(V). We say

f is equivalent to g at x, if and only if there exists W

W c U n V, such that

Using conditions 2 and 3 of Definition 6.1.1, the reader may easily

verify that
x

is an equivalence relation. We denote the set of

equivalence classes by The set inherits the structure of a ring

from the rings R(U) and we let k(U) • denote the corresponding

"equivalence class" ring homomorphisms, defined for U e In the

sequel we often write f
f at x.

Examples.

7. If we let 0 denote the Oka presheaf of the complex manifold X, then

is just the ring of germs of analytic functions at x (see also

Chapter 3, §1; Chapter 4, §1).
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8. If we let H denote the presheaf of meromorphic functions on the

complex manifold X, then is the field of germs of meromorphic

functions at x (see Chapter 3, §4; Chapter 4, §1).

Set

R— uR
x

x€X

and let it: R • X denote the projection defined by mapping points in

to x. We now topologise R. Given I e R(U), we have a section

(relative to it) of R over U defined by 7(x) — x t U. For a base of

open sets for the topology of R, we take the collection of sets

f(U) C R, over all U a U and f a R(U). The reader may easily verify that

this defines the base for a topology on P. Clearly the local sections

f: U -' R, f a R(U), are continuous in this topology.

Lenina 6.1.2. With the above notation we have

1. it: P -. X is a local homeomorphism.

2. The Induced topology on c Is discrete for all x a X.

Proof. Property 2 is immediate from 1. For 1 we note that ,Tf

is the identity map on U for all f a R(U) and so f maps U homeomorphically

onto T(U) with inverse ITIT(U). 0

We call the topological apace P, together with the projection

map it: P X, the eheafification of the presheaf R or the sheaf

associated to the presheaf R. We denote the sheaf by the triple (R,ir,X)

or, more usually, by the symbol R. The ring — is called the

stalk of the sheaf at x.

Let us summarlse our construction. Given a presheaf

R — of rings on X we have a ring naturally defined at each

point x a X. The disjoint union P of the rings has the natural struc-

ture of a topological space in such a way that the local sections ?

associated to I a R(U) are continuous and the projection ii: R • X is a

local hoineomorphism. Each stalk has the structure of a ring with
di8crete topology. The triple (R,rr,X) is called a 8heaf of rings on X.

Clearly our construction equally well for presheaves of sets,
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groups, algebras, etc. to yield sheaves of sets, groups, algebras, etc.

Shortly we shall give a general definition of a sheaf which does not

depend, a priori, on the existence of a presheaf.

Examples.

9. Let denote the sheaf of rings associated to the presheaf

of continuous functions on X. We call Cx the sheaf of germs

of continuous s-valued functions on X. Often we drop the subscript

X and just write C (this remark applies also to subsequent examples).

The stalk is the ring of germs of continuous cl—valued functions at

x, x s X. Suppose that A: U C is a continuous section of C over the

open subset U of X. We claim that there exist8 a unique a e C(U) such

that — A. In other words, continuous sections of the sheaf correspond

to continuous s—valued functions. First notice that A determines a

function a: U * defined by a(x) — A(x)(x) (evaluation of the germ

A(x) at x). We must prove that a is continuous. Let x U and observe

that by definition of the topology on C we may find an open neighbourhood

V of x, V c U, and a C(V) such that AIV. But now a — aIV and so a

is continuous at x. Since x was an arbitrary point in U it follows that

a is continuous on U. Finally a is the unique g—valued function on U

satisfying A since the germ of a at x determines the value of a at x,

x a U. Clearly what we have said above for the preaheaf and

corresponding sheaf works equally well for the presheaves Dx and

and so we obtain the sheaves of rings

Sheaf of germs of ck s—valued functions on the differential

manifold x.

Sheaf of germs of LI—valued functions on the differential

manifold X.

Ox: Sheaf of germs of analytic functions on the complex

manifold X.

The sheaf is often referred to as the Oka sheaf of X.

We remark the important fact that a continuous local section of

(reap. over an open subset U corresponds to a unique

(resp. analytic) function on U. The proof is the same as for Cx.
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Finally, we observe that is an open subset of and that

each stalk is a subring We say that is a eubeheaf (of

rings) of Generally, if (R,it,X) and (S,n,X) are sheaves of

rings on X, we say that R is a subsheaf (of rings) of S if R is an open

subset of 5, — it and for all x X, is a aubring of Thus

all the sheaves constructed above are subsheaves of Cx. The reader

nay care to formulate the analogous concept of eubpre8heaf.

10. Let r denote a ring with discrete topology and rx be the presheaf

of locally constant r—valued function on X. Then the corresponding

sheaf, which we shall also denote by r.
is a constant sheaf (that is, topologically a product).

Sections of are r—valued functions on X which are constant on connec-

ted components of X.

11. Let Z be an analytic subset of the complex manifold X. We let

denote the sheaf associated to the ideal presheaf of Z. Dropping

the subscript Z, we see that for each x c X, is an ideal in For

this reason we refer to 1 as a sheaf of ideals (of 0). Observe that

for x Z, whilst if Xe 1,

12. If E is a holomorphic vector bundle over the complex manifold X,

we let E denote the sheaf of germsofholomorphic sections of E associated

to the presheaf of holomorphic sections of E. We see here that for

each x e X, is an Or_module and we refer to E as a sheaf of 0-modules.

For our particular example, we see that is a free of rank

equal to the fibre dimension of H.

13. Let I'4 denote the sheaf of germs of ineromorphic functions on X

associated to the preaheaf H — of meromorphic functiona on X.

Since N is a field for all x e X, N is an example of a sheaf of fields.

A continuous section of N over X is called a meromorphic function on x

— see Definition 4.4.4. However, a continuous section of N over an

open subset U of X need not correspond to an element of H(U). This is

a reflection of the fact that elements of M(U) are all quotients of

analytic functions defined on U whilst meromorphic functions on U need

not be representable globally as a quotient of analytic functions. The

simplest example found by taking X U — and m any non—constant

meromorphic function on P1(f).
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14. Our final example concerns the topology of the sheaves and

We shall prove that the topology on is Hausdorff whilst that

is not. First we prove that is Hausdorff. Let A,B A B.

Set x — lt(A), y — it(B). If x y, choose disjoint open neighbourhoods

U, V of x, y and a a A(U), b a A(V) such that a(x) A, b(y) B.

Clearly (U), b(V) are disjoint open neighbourhoods of A, B. If x y,

choose a connected open neighbourhood U of x and a,b a A(U) such that

— A, — B. If 0, uniqueness of analytic

continuation implies that a b on U contradicting our assumption that

A # B. Hence is Hausdorff. To show that 9x is not Hausdorff it

is enough to observe that for n 1, we cannot separate the zero germ

from the germ at zero, in It°, of the function y defined by

Y(x1 x0) 0, � 0

exp(—l/x2), Xn > 0

Since is Hausdorff it follows that has the structure of a complex

manifold spread over X (the complex structure on is induced from that

on X via the local homeomorphism it). We shall exploit this fact in our

construction of the envelope of holomorphy in §2.

Next we shall give the general definition of a sheaf and show

how a presheaf is naturally associated to every sheaf.

Suppose that we are given a topological space F and local

homeomorphism ii: F X. We shall say that (F,it,X) is a 8heaf of' rings
on X if

1. The stalks (.. 1T"1(x)) have the structure of a ring for each

x X.

2. The ring operations are continuous in the topology on F.

Condition 2 needs further elaboration: Suppose that U is any

open subset of X and s, t are continuous sections of F over U. Then we

require that a ± t, St are continuous sections of F over U, where we

define addition, subtraction and multiplication of sections using the

ring Structure in the stalks. Equivalently, we may take the product F x F

over X x X and restrict to the diagonal c X x X. Addition, subtraction

and multiplication then define maps of F x F which should be

continuous.
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Again it is straightforward to define sheaves of sets, groups,

algebras, etc. and we omit formal definitions. In case R is a sheaf

of rings over X, we say that a sheaf S on X is a 8heaf of R-module8 if

each stalk has the structure of an and the module

operations are continuous in the sense described above.

Suppose that (F,rT,X) is a sheaf of rings. For each U U, we let

F(U) denote the space of continuous sections of F over U. Then F(U)

is a ring and, defining restriction homomorphisms in the obvious way,

we see that F' — is a presheaf of rings on X.

Proposition 6.1.3. Let (F,n,X) denote a sheaf of rings on X.

Then the sheafification of the presheaf F' — is equal to F.

Proof. We leave this as an elementary exercise for the reader. 0

Example 15. The presheaf N' associated to the sheaf N of germs of

meromorphic functions on X is not generally equal to the presheaf M of
meromorphic functions on X. However, it is clear that M sad N' have

the common sheafification N.

Suppose that R is a presheaf of rings on X with associated sheaf

R. We have already seen that for all our examples, except that of

meromorphic functions, R' — R. Necessary and sufficient conditions for

R' to equal It are given by the following elementary lemma the proof of

which we omit.

Proposition 6.1.4. Let It be a presheaf of rings on X with

associated sheaf R. Then R' — R if and only if given any family

i a I) c u and corresponding such that on

for all i,j I, there exists a unique a a R(UUi) such that

i a I.

Remarks on terminology and notation. In the literature a sheaf is

often defined to be a presheaf which is equal to the presheafification

of its associated sheaf. What we have called a sheaf is then referred

to as the eapaoe of the sheaf (or presheaf). In the sequel we

usually use the same notation for the sheaf and its associated presheaf.

By virtue of Propositions 6.1.3, 6.1.4 this will not lead to confusion

as, with the exception of the sheaf of germs of meromorphic functions, all
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our basic examples satisfy the conditions of Proposition 6.1.4.

Aside from sheaves of sections of vector bundles and constant sheaves,

we generally use script letters to denote sheaves and follow the

notation developed earlier for our examples on sheaves.

For the remainder of this section we shall be considering

morphisms of sheaves and various constructions involving sheaves. For

the sake of brevity we restrict attention to sheaves of rings and

modules noting that all our definitions generalise straightforwardly

to sheaves of groups, fields, algebras, etc.

Morphisms of sheaves. Let (F,1T,X) and (F',7r',X) be sheave8 of
rings on X. A sheaf rnorphian from F to F' is a continuous map A: F -, F'

covering the identity on X such that if

A the stalks at x then is a ring homomorphism for all

x X. We say that A is a sheaf ieanorphvsm if A is a homeomorphi8m

and A and A1 are sheaf morphisms.

Remarks.

1. We shall often refer to a sheaf morphism between shesves of rings

(or groups, algebras, etc.) as a sheaf homomorphism or just homomorphism.

In case F, F' are S—modules, where S is a sheaf of rings on X, we refer

to a sheaf morphism between F and F' as an S-module honlomorphi8m.

2. Notice that a sheaf morphism is a local homeomorphism and therefore

an open mapping.

We may similarly define morphisms between presheaves. Indeed,

suppose R and S — are presheaves of rings on X.

Then a morphism a: R S consists of a family (aU: R(U) S(U): U e U)

of ring homomorphisms which are compatible with the restriction homomorph-

isms. That is, for U,V U, U V, we have the commutative diagram

R(U) )S(U)

I

S (V)
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The reader may easily verify that a morphism a: R -* S of

presheaves induces a unique sheaf morphism A: R ÷ S between the

sheaves associated to R and S. Conversely, any sheaf morphism

A: R S is associated to a unique presheaf morphism a: R' -* 5' between

the presheaves associated to R and S. We frequently use the8e

observations in our construction of sheaf morphisma and indeed in the

following examples all the sheaf morphisins are constructed first at

the presheaf level.

Examples.

16. Let E and F be holomorphic vector bundles over the complex manifold

X and A: E ÷ F be a holomorphic vector bundle map. Then E and F are

Oxlnodules and A induces in the obvious way an Ox—module homomorphism

A: E F.

17. Let X be a differential manifold and for p � 0 let denote the

sheaf of germs of sections of the bundle of complex p—forms.

Note that C0 and each has the structure of

a subaheaf of and so the sheaves have the

structure of a-modules. For p � 0, exterior differentiation induces a

morphism d: of a—modules. Observe that d is certainly not a

morphism of

18. Let X be a complex manifold and for p,q � 0 let denote the

sheaf of germs of C'° sections of the bundle of complex

(p,q)—forms. As in example 17, the operators 3 and induce a—module

homomorphisms

Since 0, we see that is actually an Ox_module

homomorphism. Similarly 3 is an homomorphism where denotes

the sheaf of germs of anti—holomorphic functions on X.

19. Let X be a complex manifold and for p � 0 let denote the

sheaf of germs of holomorphic sections of Since 0,
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we see that the operator 3 Induces a homomorphism

3: p � o.

Definition 6.1.5. A sequence F .._L4. H of sheaves is said
A B

to be exact at G if the sequence of rings is exact

for all x X

Remark. We may define a sequence R of presheaves to

be exact at S if the sequence R(U) —'S(U) of rings is

exact for all U e U. It Is most important to note that presheaf

exactness is not equivalent to sheaf exactness and a sheaf exact sequence

will not generally give rise to a presheaf exact sequence (the converse

is always true). In fact sheaf exactness is very much a local matter

whilst presheaf exactness is essentially global. In §3 we show how

sheaf cohomology enables us to measure the deviation from presheaf

exactness of a given sheaf exact sequence. We should also mention the

important class of coherent Ox—modules that we introduce in Chapter 7

for which it is true that sheaf exactness implies "local" presheaf

exactness.

A sequence 0 F G H 0 of sheaves is said to be 8h02't

A B

exact if each of the sequences 0 -+ —+H 0 is a short

exact sequence, x c X. We may similarly define exactness for general

sequences and we follow the usual notational conventions.

Examples.

20. Let 0 E 0 be a short exact sequence of holomorphic

vector bundles over the complex manifold X. Then the corresponding

sequence 0 E —ii. F G 0 of sheaves is a short exact sequence of

21. Let X be an n—dimensional differential manifold. The de Rham

complex is the sequence of f—modules given by exterior differentiation:

o • ... j>
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(i denotes inclusion).

The leasna implies that the de Rham complex is sheaf exact.

However, the de Rham complex is generally not presheaf exact as we shall

now show. Suppose that X is compact, oriented and without boundary.

We prove that the de Rham complex is not presheaf exact at For this

it is enough to find an n—form on X (that is, continuous section of cn

over X) which is not the exterior derivative of an (n—l)—form on X.

Choose any n—form $ on X such that # 0 (Such forms always exist

with support in a coordinate chart). Now — 0 and so if the de Rham

complex is presheaf exact at C° there exists an (n—l)—form on X

such that diii — •. But this cannot be since by Stokes' theorem

— 0. We shall see in that the obstruction to •

being the boundary of an (n—l)—form is topological and lies in —

the nth. cohoinology group of X. More precisely, • determines an element

[+1 e and • is a boundary if and only if — 0.

22. Let X be an n—dimensional complex manifold. For p,q 0 we have
the canplames

o J÷ _-L,. 0

o
1>

... 0

Here i denotes inclusion denotes the sheaf of germs of anti—

holomorphic sections of the anti—holomorphic bundle In

case p — 0, we obtain the important complex

which relates the Oka sheaf to the sheaves

It is an immediate consequence of the Dolbeault—Grothendieck lemma

(Theorem 5.8.1) that the Dolbeault complexes are all exact.

23. It follows from example 19 that if X is an n—dimensional complex

manifold we have a complex

0 0

of cL—modules. We shall now prove that this sequence is exact.
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Exactness at is clear since diOx —
Now suppose p > 0 and let

be s—closed. Since — 0 and d — + — 0 and we see by

the lmana that there exists such that d4i Since

diji — + we see that and — 0. That is

q, and • — Hence the sequence is exact.

For the next few paragraphs we consider some general constructions

involving sheaves, presheaves and morphisms.

Definition 6.1.6. Let A: F G be a sheaf homomorphism and

— {aU: F(U) G(U)} denote the corresponding morphism of presheaves.

define the presheaf kernel of A, presheaf cokernel of A and presheaf

image of A to be the presheaves given by U U

and U respectively. We denote the associated sheaves by

Ker(A), Coker(A) and Im(A) respectively and refer to them as the (sheaf)

kernel, cokernel and image of A respectively.

Remarks.

1. It is easy to see that Ker(A) is always equal to the presheaf

kernel of A butthat, in general, Im(A) and Coker(A) are not equal to

the image and cokernel presheaves of A.

2. For all x X, we have

and Im(Ax).

3. We say that A is injective if Ker(A) — 0; aurjeotive if Coker(A) — 0.

By remark 2 this is equivalent to injectivity or surjectivity at the

stalk level.

4. A sheaf sequence F is exact at 6 if and only if

Im(A) — Ker(B) (Here we are regarding Im(A), Ker(S) as subsheaves of 6).

5. Associated to a sheaf homomorphism A: F 6 we have the exact

sheaf sequence

0 Ker(A) 0 *

(Here i and q are induced from the inclusion and quotient maps

respectively).
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Suppose i: F ÷ C is the inclusion map of F as a subsheaf of C.

We define the quotient eheaf C/F to be the sheaf associated to the
presheaf U G(U)/F(U). We have the corresponding short exact

sequence

o -, F ÷ 0

We remark that C/F is isomorphic to Coker(i) and that for all

x X,

Examples.

24. Let 0, H respectively denote the Oka—sheaf and sheaf of germs of
meroinorphic functions on the complex manifold X. We have the short

exact sequence of sheaves of Abelian groups

o -'0 H 0

We see that local sections of M/O are just the principal parts of

ioeromorphic functions. That is, if rn,m' !'4UJ) then m,m' determine the

same section of H/C if and only if rn—rn' c 0(U) (—A(U)). We can now

give a sheaf theoretic formulation of the Cousin I problem (see

Definition 3.4.9): The data for the Cousin I problem on X is a

continuous 8ection P of M/0 over X. The Cousin I probløn (for P) is then

to find a continuous section m of H over X such that q(m) P.

25. Let 0*, denote the multiplicative sheaves of groups of units of

0, H on the complex manifold X. Thus, 0*, MC will be the groups of

invertible germs in respectively (see §4, Chapter 3). We let V

denote the quotient sheaf M*/0*. Then V is a sheaf of Abelian groups

called the sheaf of of divisors on X. We have the short exact

sequence

0 0* M* + V -, 0

Observe that a continuous section of V over X is a divisor

(Definition 4.5.9). We may now give a sheaf theoretic formulation of

the Cousin II problem (Definition 3.4.10): The data for the Cousin II

problem is a continuous section d of V over X. The Cousin II problem

(for d) is to find a continuous section m of M* such that q(m) d.
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If we take X to be a Riemann surface we see that for all x a X.

However, V is far from being the constant sheaf as continuous

sections of V are always non—zero on a discrete 8ubset of X. In

fact the "zero set" of a continuous section of V is always an open

subset of X!

26. Let 2 be an analytic subset of the complex manifold X. We start

by defining the Oka or structure sheaf of Z. Let U be an open subset of

X and f,g We say f and g are 2—equivalent if f — g on Z a U.

That is, if f—g Iz(U) (see Example 5). The set of Z—equivalence

classes associated to U is isomorphic to Ox(U)/Iz(U) and

U Ox(U)/Iz(U) defines a presheaf of rings on X. We denote the

associated sheaf by °z and observe that — 0, x Z. We call

the Oka or structure sheaf of 2. Now is just the quotient sheaf

and we have the short exact sequence

0 0x 0z
0

Any element of determines a well defined continuous function

on 2 a U. Consequently, a continuous section of over an open set U

of X determines a well—defined continuous function on 2 a U. We call

such functions analytic on Z a U. It is easy to see that a

function f: Z a U will be analytic if and only if for every x a 2 a U

there exists an open neighbourhood V of x in X and g a A(V) such that

gIZ a U a V fIZ a V.

Definition 6.1.7. Let R be a sheaf of rings on X and F, 0 be

sheaves of R—modules.

1. The direct sum F a C of F and C is the sheaf of R—modules

associated to the presheaf U F(U) a 0(U).

2. The tensor product FaRG of F and C over R is the sheaf of

R—modules associated to the presheaf U

Remarks.

1. It i8 easily seen that and (FaRG)x

x E X and we assume these properties in the sequel.

2. We denote the p—fold direct sum of the sheaf of R—modules F by
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Examp'es.

27. Let E, F be holomorphic vector bundles over the complex manifold

X. Then EOF — E e F and EaF — EF (equality here means, of course,

up to natural isomorphisin). Similar relations hold for smooth or

continuou8 vector bundles.

28. The sheaf of germs of v—valued holomorphic functions on a complex

manifold is isomorphic to (we say the sheaf is free of rank p — see

Definition 6.1.8 below)

29. Let E be a holomorphic vector bundle of dimension p over the

complex manifold X. Then E is locally isomorphic to That is, we

may find an open neighbourhood U of each x X such that EIU

Here the restriction of sheaves to an open set has the obvious inter-

pretation. In particular,
—

Definition 6.1.8. Suppose F is a sheaf of R-modulea on X. We

say that F is a locally free sheaf of R—modules of rank p if F is
locally isomorphic to We say that F is free of rank p if F

The next proposition is valid, with the same proof, for smooth

or continuous vector bundles.

Proposition 6.1.9. Let X be a complex manifold. There is a

bijective correspondence between isomorphism classes of locally free

sheaves of 0—modules of finite rank over X and holomorphic vector

bundles over X.

Proof. We have already indicated in Example 29 that the sheaf of

holomorphic sections of a holomorphic vector bundle is a locally free

sheaf of 0—modules of finite rank. Suppose now that F is a locally free

sheaf of 0—modules on X of rank p. Thus we have an open cover {U1) of X

and corresponding 0 —isomorphismsUt

Define -, by — Now is an isomorphism
3 ii ii

3 3

of the —module and so is given by a p x p—matrix with holomorphic
ii ii

entries defined on That is, determines a holomorphic map

Clearly the are the transition functions for a

holomorphic vector bundle E on X. We leave it to the reader to check

that E- F. 0
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Example 30. In this example we follow the notation and

assumptions of Examples and 22. Thus for p,q � 0 we have an
pq p,q+l

0-homomorphism C • C of sheaves over the complex manifold X.

If E is a holomorphic vector bundle over X, E is a sheaf of 0—modules

and 80, since 5 is an 0—homomorphism, we may form

5(

But — — (M,E),. Hence, as in of Chapter 5,

we have extended the 5—operator to E—valued forms. In the sequel we

set — and A"°(M,E)' — Using the

Dolbeault—Crothendieck lemma as in Example 22, we find that the Dolbeault

complexes

0 QP(E) —L ... -, 0

are exact for p � 0.

Next we see how sheaves transform under maps of the underlying

topological spaces.

Suppose f: X Y is a continuous map of topological spaces and

(F,ir, Y) is a sheaf of rings on Y. We shall define a sheaf of

rings on X called the inverse image sheaf of F. To this end, the stalk

of at x a X will be equal, as a ring, to Ff(x). We let be

the disjoint union of the rings F over x a X. It remains to
1

f(x)
topologise f F. For a basis of open sets for the topology on f F we

take the set of all images 8(U), where U is an open subset of X and a is

a section of f'F over U such that U Y is continuous.

Examples.

31. Let Z be a subset of X with induced topology and i: Z + X denote

the inclusion map. If F is a sheaf on X we call the restriction of

F to Z and denote it by FIZ or F1.

32. Let F be a sheaf of R—modules on I and X -* I be continuous.

Then is a sheaf of on X. Suppose that X, I are complex

manifolds, f is holomorphic and E is a holomorphic vector bundle over I.
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It is natural to ask for the relation between f1E and sheaf of

holomorphic sections of the pull—back bundle f*E. Now is an
module rather than an Ox—module. However, is naturally an
module — indeed we have a sheaf homomorphism of into defined
in the obvious way by composition of elements of with f. Hence

we may form the sheaf

f*E — f1Em
—

Now f*E is a sheaf and the reader may verify that f*E • f*E.

Generally, for any sheaf F of Or—modules, we define f*F —
f (Or)

and f*F will then be a sheaf of Ox—modules on x.

Next we turn to the push—forward of sheaves. Suppose f: X -' Y is
a continuous map and (F,iv,X) is a sheaf of rings on X. We define the

direct image eheaf to be the sheaf of rings on Y associated to the
presheaf U

Example 33. If f: X Y is a holomorphic map of complex manifolds

and F is a sheaf of Ox-modules on X then is a sheaf of
on Y. The reader may verify that we have a canonical sheaf morphism of

into and so has the natural structure of an If H
is a holomorphic vector bundle over X, will not generally be the

sheaf of sections of a holomorphic vector bundle over Y. A simple example

is found by taking the sheaf of sections (— 0) of the trivial bundle
over and the map f: defined by f(z) — z2. It is easily verified

that is not locaUy free (see also the discussion below and Chapter 7).

Direct image sheaves play a most important role in complex analysis
but are considerably more difficult to describe and analyse than inverse
image sheaves. The full analysis of direct image sheaves requires the
machinery of spectral sequences (see Godement [1] and also Griffiths and
Harris [1; Chapter 3]). Here we shall only describe the stalks of direct

image sheaves and then only in the case when the underlying spaces and map

satisfy additional conditions.
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Proposition 6.1.10. Let be a sheaf of rings on X and

f: X Y be continuous. Suppose that X, Y are locally compact and that

f is proper (that is, inverse images of compact sets are compact). Then

is naturally isomorphic to all y a Y.

denotes the spaces of continuous sections of the sheaf F. restricted to
—l —l

f (y), over f (y)).

Our proof follows that given in Godement [1). First we need some

preliminary lemmas which are of interest in their own right.

Lenria 6.1.11. Let {M1: I a I) be a locally finite cover by

closed sets of the topological space X. Suppose that (F,w,X) is a sheaf

of rings on X and that for each I I we are given a continuous section

s of F . Then, if the satisfy the compatibility condition
i Mi

Si — Sj on M1 ri N1, there exists s a F(X) such that sIN1
— Si.

Proof. First we remark that the lemma is trivial If the (M1}

form an open cover of X. Clearly our conditions on the (Sj} imply that

there exists a unique section s of F over X which restricts to

s is continuous. Now, given x X, we may find an open

neighbourhood U of x which meets only finitely many N1, say N1,...

As the Mi are closed, we may assume that U is chosen so that

X N1 n ... n Shrinking U further if necessary we may also suppose

that there exists t F(U) such that t(x) s(x) — s1(x) .. —

By definition of the sheaf topology on F, there exist open neighbourhoods

of x such that t
—

on U1, 1 3 p. We may suppose U — U1,

1 3 � p. Hence a and t are equal In U n (H1 u ... u — U and so s

is continuous at x. 0

Lema 6.1.12. Let S be a closed subset of the paracompact space X

and suppose that F is a sheaf on X and 5 e F(s) ( Fs(S)). Then there

exists an open neighbourhood V of S in X and F(V) such that 15 — s.

Proof. By definition of the topology on F, we may find an open

neighbourhood U in X of every point x S and t a F(U) such that

tIU n S — a. Hence, by the paracompactness of x, we may find a locally

finite open cover {U1: I e I} of S and sections a F(U1) such that

s1IU1 n S — s for all I I. Take a refinement {v1) of U1 such that

c for all I and let W be the subset of X consisting of all points

x in such that if x
a

n V3 then s1(x) — s3(x). By Lemma 6.1.11,
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applied to Fiw, the (sj} define a continuous section s of F over W. We

claim that W contains an open neighbourhood of S. Let x E S. There

exists an open neighbourhood V of x which meets only finitely many of the

say Shrinking V we may suppose that x s

Now s1(x) — ... — and so, shrinking V further if necessary, we

may suppose that are equal on V. Now observe that V CV. El

Lenina 6.1.13. Let f: X + Y be a proper continuous map between

locally compact spaces. Fix y Y and let V be any open neighbourhood

of in X. Then there exists an open neighbourhood U of y in Y

such that c V. In other words, a fundamental system of open

neighbourhoods for is given by U an open neighbourhood of y

Proof. The intersection over all relatively compact

neighbourhoods U of y in Y is clearly equal to f1(y). Since each C1(U)

is compact, it follows that for some relatively compact neighbourhood

U of y we must have fl (X\V) —0. (For an alternative proof of

this lemma, see the exercises at the end of the section). 0

Proof of Proposition 6.1.10. We first remark that we have a

natural homomorphism 0: defined in the obvious way. We

must show that F is bijective. Let y c F(f (y)). By Lemma 6.1.12,

there exists an open neighbourhood V of and y F(V) such that

— y. By Lemma 6.1.13, we may assume that V for some

open neighbourhood U of y. But now y lies in the presheaf generating

and so determines an element of Clearly this construction

gives the required inverse to 0. 0

We now briefly look at the use of sheaf formalism in defining

structures on topological spaces. Suppose X is a topological space and

F is a subsheaf of ct—algebras of (regarded as a sheaf of Q—algebras).

We may think of F as defining a structure on X: Structure of all

functions of type F (that is, functions of type F would be given by

continuous sections of F). All the structures so far considered —

analytic, smooth, etc. — are locally defined and we shall now exploit

this fact to give sheaf theoretic definitions of various structures on

topological spaces.
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Example 34. Let X be a topological space and F be a subaheaf of

a—algebras of Suppose that F is locally to the sheaf
of germs of functions on . Then X may be given the unique
structure of a differential manifold with9x — F. Before proving our
assertion we need to explain what is meant by (local) isomorphiam of
sheaves defined over different topological spaces. For our example,
we require that we can find an open neighbourhood U of each point x e X
and a homeomorphism 4): U 4(U) c such that the induced map
4*: CO(U) restricts to an isomorphism of 94(u) with

F is locally isomorphic to9, we may find an open cover {Ui} of

X and corresponding homeomorphism -. 4(U1) c such that

induces an isomorphism of 9 with F for all i. It is now a
4(U1) U1

straightforward matter to verify that {(U1,41)} defines a differential

atlas on X and that the associated structure sheaf = F. The same

argument works if F is locally isomorphic to the Oka—sheaf of and in

this case we find that X has the structure of an n—dimensional complex

manifold with Oka sheaf equal to F.

Motivated by the example above we may now give an intrinsic
definition of a (reduced) analytic space which generalises our earlier

definition of analytic set. First we define the local models for

analytic spaces: The local models for analytic spaces will be the Set

of all pairs (Z,O1), where Z is an analytic subset of an open subset
of some and the structure sheaf of Z (restricted to Z). A

(reduced) analytic apace will then be a pair (X,Ox), where X is a
topological space and is a subsheaf of a—algebras of which is

locally isomorphic to a local model. That is, we may find an open

neighbourhood V of any point x c X, a local model (Z,Oz) and a

homeoinorphism of V onto 1 such that 4 induces an isomorphism of with

0z
("isomorphism' in the sense described in Example 34).

Rønark. Unfortunately fibre products of (reduced) analytic

spaces cannot generally be constructed within the category of (reduced)

analytic spaces. The problem lies with the fact that the structure

sheaves we obtain when attempting these constructions may have nil—

potents. Thus, the category of analytic spaces has to be enlarged so

that it is closed under fibre products. For this, instead of consider-

ing subsheaves of we consider sheaves of local a—algebras on X:
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A sheaf F on X is said to be a sheaf of local a—algebras on X if F is a

sheaf of U—algebras and each has a unique maximal ideal with
for all x a X. A simple example of a sheaf of local e—algebras

which is not a subsheaf of is given by taking X to be the origin of
and F — 00/(z2) denotes the Oka sheaf of II restricted to 0). Let

us now describe the local models for (unreduced) analytic spaces. A

local model will be a pair (X,Ox), where X is an analytic subset of an
open subset U of and — Ou/(fp.",fk)IX, where t

and X — Z(fl,...,fk). An analytic space is then defined to be a pair

(X,Ox), where is a sheaf of local I—algebras on X which is locally

isomorphic to a local model. For further details and examples the

reader may refer to the introductory article by )lalgrange [1].

Exercises.

1. For each open subset U of the topological space X let B(U) denote

the ring of continuous bounded functions on U. Show that

Bx is a presheaf of rings on X with sheaficication

Hence deduce that the presheaf associated to the sheafification of Bx

is not in general equal to Bx.

2. Let F, 0 be sheaves of rings on X and Nom(F,G) be the sheaf

associated to the presheaf U -* where is the ring

of sheaf homomorphisms from Fu to Show that for all x a X, we have

a natural map + Hom(Fx,Gx) which is, in general, neither

injective nor surjective.

3. Let X be a complex manifold with Oka sheaf 0 and F be a locally

free sheaf of 0—modules of finite rank on X. Define the dual F* of F

to be the sheaf Horn0(F,0). Prove that

A) F* is the sheaf of germs of sections of the dual of the

holomorphic bundle associated to F (up to isomorphism).

B) F**wF.

C) Ilom0(F,G) for any sheaf of 0—modules G.

D) x a X.

Show that similar results hold for locally free sheaves of or

9x0thLle5.
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4. Let Z be a closed subset of the topological space X and 1: Z * X

denote the inclusion map. If F is a sheaf on Z, set F • We

call F the trivial extension of F to X or the sheaf on X obtained by

extending F by zero outside Z. Show that

A)

x a Z.

B) F.

5. Let (F,1T,X) be a sheaf of rings and s a F(X). Define the support

of a, supp(s), to be {x a X: s(x) # 0). Show that supp(s) is a closed

subset of X.

6. Let (F,it,X) be a sheaf of rings. Define the support of F, supp(F),

to be {x a X, Fx # 0). Show that supp(F) need be neither open nor closed.

7. Let F be a locally free sheaf of on the complex

manifold Y and suppose that f: X + Y is a holomorphic map of complex

manifolds. Prove that

f5(0e0f*F) for any sheaf G of Ox_modules on X.

8. Let X,Y be complex manifolds and F, C be sheaves of Ok—,

prespectively. Show that for any holotnorphic map f: X -*

Rom(f*G,F) Hom(G,f*F) (We say that f* and are acLjoint functora
between the categories of and Or—modules). Deduce that we have

canonical homomorphisms G and F.

9. Let X be a complex manifold and set K — Kernel C0'0 + C1'1

Show that the complex

0 * K C°'°

is sheaf exact (Hint: For exactness at the argument used in

Example 23 may be helpful).

10. Let f: X Y be a continuous map of topological spaces. Prove

a) If a: F C is a morphism of sheaves over Y then we have a

canonical sheaf map f1(a): f1G of sheaves over X.
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b) is exact. That is, given a short exact sequence

o -. F 0 of sheaves over Y, the sequence
-•1 —1

o
f f (b)

)rf -'0 is exact.

11. Same assumptions as Ql0. Show that if a: F 0 is a morphism of

sheaves over X then we

a) have a canonical sheaf map + of sheaves

over Y.

b) is left exact. That is, given an exact sequence

o -' F of sheaves over X, the sequence

f*(b)
o ) is exact.

c) In general is not exact.

(Hint for c): Take X — a2\(0}, Y — and define f(x,y) — x. Let I

denote the ideal sheaf of Show that the image of the

sequence 0 is not exact).

12. Suppose that f: X -' Y is a holomorphic map of complex manifolds.

Prove that

a) If a: F G is a morphism of sheaves of Or—modules over

then we have a canonical sheaf morphism f*a: f*F f*G of

sheaves of

b) f* is right exact.

c) f* is generally not left exact.

13. Let X, Y be metrizable topological spaces and f: X + Y be a proper

continuous map. Show that f is closed (that is, f—images of closed sets

are closed). Deduce Leuria 6.1.13 in case X, Y are metrizable (as will

always be the.caae if X, Y are manifolds).

14. (Koszul complex). Let E be a holomorphic vector bundle of rank q

on the complex manifold M and suppose a Show that we have

complexes of 0—modules

o ÷ 0 ... 4- 0
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where — sAt; n3(t) — C5t, 0 � 1 � q—l, and that these complexes

are exact if (and only if) a is nowhere zero (see exercise 6, §1,

Chapter 5).

U. Envelope of holomorphy

In this section we wish to consider the following problem: Given

a domain in can we find a "maximal" n—dimensional complex manifold

ci containing fl such that every analytic function on ci has a unique

extension to ci? Example 6 of §4, Chapter 2 shows that we cannot require

ci to be a domain in It turns out that to solve our problem it is

best to work within the category of domains spread over U°. It then

becomes possible to give a particularly elegant solution using the

formalism of sheaf theory. First we recall some definitions.

Definition 6.2.1. A manifold spread over is a pair (ci,it), where

ci is a connected, separable, Hausdorff space and it: ci + is a local

homeomorphism (not necessarily surjective). We call it the spreading of

ci in

Given a spread manifold (ci,it), the map it induces a complex

structure on ci. In the sequel we always assume that ci comes with this

complex structure. We also often refer to (ci,it) as "the manifold

spread over ga", omitting reference to it. We remark that given a complex

manifold ci there may exist many different spreadings of ci in all of

which induce the given complex structure on ci.

Suppose (fl,iT), (ci',it') are manifolds spread over and

8: ci + ci' is continuous. We say that 0 is a morphism of spread manifolds

if it'O — it. That is, if — for all x s n(ci). Here we have set

cix — 1T1(x), — The reader may easily verify that a morphism

of spread manifolds is with respect to the induced complex

structures and is also an open mapping.

Definition 6.2.2. Let ci, ci' be manifolds spread over II" and

0: ci +ci' be a morphism. We say that the pair (ci',O) is an anaiytio

extension of ci if every f extends uniquely across 0 to an element

f Ag'). That is, there exists f e A(ci') such that I — To.
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Remark. We sometimes say that is an analytic extension of

if there exists a morphism 8 such that (Q',8) is an analytic

extension of in the sense of Definition 6.2.2.

Definition 6.2.3. A manifold spread over is called a domain

of hoiomorphy if for every analytic extension of 8 is an
isomorphism.

Remark. The reader may easily verify that a domain in

a domain of holomorphy according to Definition 6.2.3 if and only if It

is according to Definition 2.4.1.

We may now state the main result of this section.

Theorem 6.2.4. Let (fl,ir) be a manifold spread over Then

there exists an analytic extension (0,8) of 0 such that

1. 0 is a maximal analytic extension of 0 in the sense that if

is any other analytic extension of there exists a morphism -. 0

making an analytic extension of 0.

2. 0 is independent of the spreading n of 0 in That is, if

iT1, iT2. are two spreadings of 0 in compatible with the given

complex structure on 0, then the corresponding maximal analytic exten-

sions 02 given by 1 are isomorphic.

DefInition 6.2.5. We call for any analytic extension (0,0) of 0

satisfying the conditions of Theorem 6.2.4 the envelope of holomorphy

of 0.

Proof of Theorem 6.2.4. Our proof follows that in Malgrange [2].

Step 1. Existence of (2.

Let denote the set of elements in A(fl) indexed by the set I.

We let denote the vector space of all functions from I to addition

and scalar multiplication defined coordinatewise. Let U be an open

subset of We say that a map h (h1): U -# is analytic if each

component function hi: U -# ct is analytic. As in §1 we may construct the

sheaf of germs of analytic functions from to Exactly
as in Example 14 of §1, (O',p) is a spread manifold over (of course,
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01 will not be connected). We shall show that the envelope of holomorphy

of may be represented as a connected component of 01. First we define

a morphism 0: Given x choose an open neighbourhood U of x

in such that restricts to a homeomorphism of U on ir(U) c Set

4,— n(U) .÷ For i I, set f14, E A(n(U)). Define

0(x) E
01, where denotes the germ of f1 at x. It is

clear from the definition of the topology on 01 that 0 is continuous and

so defines a morphism of spread manifolds. We let denote the connected

component of 01 containing and set Thus is a

manifold spread over

Step 2. is an analytic extension of We show that each

c A(f2) extends uniquely to an element f1 First observe that

for each I E I we have a projection map U which induces a

morphism fli: 01 0 of spread manifolds. Thus flj maps the germ of a

map of into to its ith. component. Let a Q and choose an open

neighbourhood U of a in fl such that i8 a homeotnorphism. Set

y — Certainly is a section of 0 over I,(U) and we let

denote the corresponding analytic function on We define

This construction clearly defines an element e A(12) for each i I.

Next we must prove that f10 — and that is the unique element of

satisfying this relation. Uniqueness is obvious by uniqueness of

analytic continuation and the openness of in For the extension

property suppose x c Q and choose an open neighbourhood U of x such that

iIU is a homeomorphism. Now 0(x) and 7Tj(( Hence

f1(0(x)) —

Step 3. cI is a maximal analytic extension of Suppose that

is any analytic extension of f2. We may repeat the construction of

Step 1 to obtain an analytic extension of ?i, with a connected

component of 01. Observe that the construction used implies that

necessarily contains the image of by in 01. Since is defined as

the connected component in 01 it follows immediately that f2 —

Hence is a maximal analytic extension of 12.

Step 4. 12 is independent, up to isomorphism, of n. We first

note that if 12 is an analytic extension of 12 then every analytic map

F: 12 -* clm, m � 1, extends uniquely to 12. This follows by applying the

definition componentwise to F.
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Let us suppose that we are given two spreadings IT1, IT2 of with

corresponding maximal analytic extensions By Step 3

and the above remark, IT2 extends to We claim that

spreads in For this we first note that the tangent bundle

is analytically trivial since is spread in by But if

x it follows that we can take the derivative of to

obtain a map Since IT2 is a spreading it follows

that q(x) — D1r2(01(x)) is an isomorphism for all x Hence we may

define an analytic map p: Q -, by p(x) x

Applying our remark again we see that p extends to p:

Form the composite maps (composition in We see

that both compositions are analytic and equal to the identity on

Hence, by uniqueness of analytic continuation, they are equal to the

identity on the whole of It follows that 18 invertible on

and so, by the inverse function theorem, defines a spreading of

in compatible with the given complex structure on

82 81

Now (fl1,81) is an analytic extension of where we choose the

spreading of given by By the maximality property of (c22,02)

it follows that there exists a morphism a: ÷ satisfying

The map a is unique by uniqueness of analytic continuation. We may now

repeat the above constructions to obtain a morphism ÷

It remains to prove that a and are inverses of one another. This

follows, again by uniqueness of analytic continuation, once we have

noticed that

Ba(Oi(x)) Oi(x); a$(82(x)) — 02(x), x Q. 0
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Corollary 6.2.5. Let fI be an analytic extension of If is
a domain of holomorphy, is the envelope of holomorphy of f2.

Proof. Let fl denote the envelope of holomorphy of Q given by

Theorem 6.2.4. If is a domain of holomorphy then fl is isomorphic to

But is a maximal analytic extension of fl and hence of It
follows that is the envelope of holomorphy of fl. 0

Reniarks.

1. The map 8: fl constructed in Step 1 of the proof of Theorem

6.2.4 will not be injective unless separates points infl. This

requirement is fulfilled of course if is a domain in

2. It should be noticed that the proof of Theorem 6.2.4 works for

any subset of A(fl). In particular, it gives us the maximum domain of

continuation of any analytic function defined on representing it as

a manifold spread over

3. It should be appreciated that Theorem 6.2.4 is very much an

existence and uniqueness theorem that gives no information about how to

construct and represent envelopes of holomorphy in practice. Of

course, our existence proof is very formal and elemenatary and not too

much should be expected. In this regard it should be compared with the

classical continuation proof such as is given in Cl; Theorem

5.4.5].

4. The envelope of holomorphy of a manifold spread over may also

be represented as the spectrum of the algebra That is, the

envelope of holomorphy is isomorphic to the space of non—zero continuous

homomorphisms of into For this approach to the construction of

the envelope of holomorphy we refer to Gunning and Rossi Li].

5. Finally we remark the fundamental result that a manifold spread

over is a domain of holomorphy if and only if it is holomorphicaily

convex and if and only if it is isomorphic to its envelope of holoinorphy.

In particular, every domain of holomorphy is a Stein manifold. Proofs

of these results, which use pseudo—convexivity methods, may be found in

Gunning and Rossi [1) and 11].
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Exercises.

1. Let (12,ir) be a manifold spread over 1°. Show that if we let

denote the quotient space of defined by the relation "x equivalent

to y iff x and y cannot be separated by elements of then

A) is naturally a manifold spread over

B) separates points in

C) The envelopes of holomorphy of and are isomorphic.

2. Prove that a holomorphically convex manifold spread over Is a

domain of holomorphy (Hint: Follow the proof given in Chapter 2).

3. Let (Q,ir) be a manifold spread over and suppose U°. Given

a compact subset K of define d(K) — inf(Iz—71(C)): z s K)

(see also §4, Chapter 2). Prove that if is a domain of holo—

morphy then d(K) — d(K) for all compact subsets of Show also that

if is finitely sheeted and d(K) — d(K) for all compact subsets K

of fl, then is holomorphically convex and so a domain of holomorphy
(the non—finitely sheeted case Is more difficult and is treated in
Gunning and Rossi [1]).

§3. Sheaf cohomology.

In §1 we showed how sheaf formalismprovided a unifying topological
framework for the description of a wide range of structures on
topological spaces. In this section we introduce a powerful computational

machine for the analysis of sheaves: Sheaf Cohomology. In essence our

methods allow us to apply the highly systematised and powerful methods

of hoinological algebra to problems in global complex analysis and

algebraic geometry. The ideas we describe were introduced into complex

analysis by H. Cartan (see H. Cartan [1,2]) and into algebraic geometry

by J.P. Serre (see J.P. Serre [2]). This use of sheaves and sheaf

cohomology has undoubtedly revolutionised and clarified both fields.

Our approach to sheaf cohomology will be to first develop a

rather abstract, non—computable, theory which is valid for sheaves

defined over paracompact spaces. We then relate this theory to the

computable theory by means of Leray's theorem.
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Throughout this section we shall assume that all topological spaces

are paracompact and, as always, Rausdorff. "Sheaf" will always refer

to a sheaf of abelian groups unless the contrary is indicated.

Suppose that 0 F 0 is a short exact sequence of

sheaves over X. Given an open set U c X, it is easily seen that the

sequence

a b

F(U)

is exact but that, in general, G(U) H(U) will not be surlective

(The section functor is left— but not right—exact). Just by reference

to the Cousin I and II problems (Examples 24, 25, §1) we see the

importance of finding a measure of how far the map 0(U) 11(U) fails

to be suriective. A satisfactory solution to this problem is the primary

aim of sheaf cohonmology theory. Our first task will be to describe a

class of sheaves for which it is true that short exact sequences of

sheaves transform into short exact sequences of groups under the section

functor. That is, we shall be describing a class of sheaves for which

sheaf and presheaf exactness are equivalent.

DefInition 6.3.1. A sheaf (F,ir,X) is said to be soft if for all

closed subsets K of X and sections a F(K), a extends to a continuous

section of F over X. That is, the natural map F(X) F(K) is surjective

for all closed subsets K of X.

Proposition 6.3.2. Let 0 F 0 be a short exact

sequence of sheaves over X. Provided F is soft, the corresponding

sequence of sections

° F(X) 0

is exact.

Proof. First we remark that we shall now generally use the
same notation for the map induced on sections and the corresponding

sheaf morphism. If it is necessary to distinguish them, we use a "star"

superscript for the map induced on sections.
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We must show that for every s 11(X), there exists t G(X) such

that b(t) s. Since b: 0 H is surjective, we may find an open

neighbourhood of every x X and such that —

Hence, by the paracompactness of X, we may find a locally finite open

cover {U1: i I) of X and family 0(U1)) such that b(ti) — sIU1,

i I. Choose an open refinement {V1) of {Ui) such that c U1, i I.
Consider the set Aof pairs (g,J) where J c I and, setting — u V

-1EJ
we have g and b(g) — Now A# 0 and is partially ordered

by inclusion. The requirement's of Zorn's lemma are clearly satisfied

and so A contains a maximal element, say (t,K). It is suffiicent to

show K — I. Suppose i€ I\K. Then b(t.-t1) 0 on V(K) n and so

there exists r1 F(V(K) n such that t • Since F

soft, r1 extends to U1. But now (t,K) u (a(r1) +t11i) extends (t,K)

contradicting the maximality of (t,K). Therefore K — I. Q

Coroflary 6.3.3. Let 0 F + 0 be a short exact

sequence of sheaves over X. If F and 0 are soft so is H.

Proof. Let K c X be closed. We must show that every s 11(K)

extends to a section of Il over X. First observe that FK is soft. Hence

0 -* FK 0 is a short exact sequence of sheaves for which

FK is soft and, applying Proposition 6.3.2, there exists a section t of
O over K such that b(t) — s. Since G is soft, t extends to a section of

GoverX. o

Coroflary 6.3.4. Let 0 + F0 -* ... be a long
exact sequence of soft sheaves over X. Then the corresponding complex

a a a2

0 F0(X)

is exact.

Proof. For i � 0, let K1 denote the sheaf Ker(a1). The exactness

of the given long exact sequence is then equivalent to the exactness of

the short exact sequences

a
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For I — 0, K0 — F0 and so is soft. Hence, by Corollary 6.3.3, K1 is

soft. By induction, every is soft. Hence by Proposition 6.3.2,

the sequences

0 Ki(X) F1(x) Ki+i(X) 0

are all exact. But this is equivalent to the required result. 0

Definition 6.3.5. A sheaf (F,it,X) is fine if it admits a partit-

ion of unity of the identity morphism of F subordinate to any locally

finite open cover of X. That is, given a locally finite open cover {U1}

of X, there exi8t sheaf morphisins !lj: F + F satisfying

— 0 outside of some closed subset of X contained in U1.

2. I, the identity morphism of F.
je I

Proposition 6.3.6. Every fine sheaf is soft.

Proof. Let F be a fine sheaf over X, K c X be closed and

F(K). By Lemma 6.1.12, we may find an open neighbourhood U of K in

X and e F(U) extending a. Take the open cover {U,X\K) of X and a

partition of unity of the identity morphism of F subordinate to

this cover. Observe that — I. Setting — 0 outside U, we see that

is the required section of F. 0

Examples.

1. Let E be a smooth vector bundle over the differential manifold X.

Then E 18 fine. Indeed, suppose that is any locally finite open

cover of X and let be a C°' partition of unity subordinate to {U1).

The induce sheaf morphiems E £ and clearly is a partit-

ion of unity of the identity morphism of which is subordinate to (U1).

Hence is fine. Consequently all the sheaves that we have

defined on differential and complex manifolds are fine and, therefore,

soft. On the other hand, if E is the sheaf of holomorphic sections of a

holoniorphic vector bundle E then E is never soft.

2. Let F be a sheaf on X. Let F* denote the sheaf of germs of not

necessarily continuous sections of F. Thus, F*(U) will be the set of

all sections of F over U. The sheaf F* is is obviously fine. In fact

it is also flcibby: Every section of F* over on open subset of X extends
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to X. Flabby sheaves are used in the development of sheaf cohomology in

algebraic geometry where the spaces are not even Hausdorff, let alone

paracompact (see also the exercises at the end of this section).

We need one more definition before we can define the sheaf

cohomology groups of a sheaf on X.

Definition 6.3.7. Let F be a sheaf on X. A resolution of F is a

long exact sequence

d0 d d2
0 F F0 —p

A resolution of F will be called soft (resp. fine) if each of the sheaves

is soft (reap. fine).

Proposition 6.3.8. Every sheaf F on X has a fine resolution.

Proof. Let F* denote the sheaf of germs of not necessarily

continuous sections of F (example 2 above) and let £: F F* denote the

corresponding inclusion map. Set F0 F* and let F0 — F*/F. We have

the short exact sequence 0 F ÷ F0 0. Proceeding inductively,

let — and For j � 0 we have the short

exact sequences

0 tJ+l>F 0

Here, of course, — F. Hence we have the corresponding long exact

sequence

d d

0 -' F F0 F1 —L

where
—

and c — c0. Since the sheaves FJ are all fine, we
have constructed a fine resolution of F. 0

Remark. We call the resolution of F constructed in the proof of
Proposition 6.3.8 the canonical resolution of F.

Let F be a sheaf on X and 0 F F0 F1 ... be the
canonical resolution of F. Associated to the canonical resolution of F

we have the complex
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* dt
0 -' F (X) —f-—' F0 —' —'

We set

H0(X,F) — — Ker(d*)/Itn(d*1), p > 0

Each is an abelian group.

Definition 6.3.9. The group constructed above is called

the pth. eheaf cohomology group of K with coefficients in the sheaf F.

Theorem 6.3.10. The sheaf cohomology groups of X satisfy the

following basic properties:

1. Given a sheaf F on X then

A) H0(X,F) F(X).

B) H1'(X,F) 0 for p > 0 if F is fine.

2. If a: F G is a morphism of sheaves over X then for p � 0 there

are induced homomorphisms -+ satisfying

A) s0: H°(X,F) H°(X,G) is precisely the map on sections

induced by a.

B) If a: F -* F lathe identity, then is the identity, p � 0.

C) If a: F 0, b: 0 -+ Il are inorphisms of sheaves over X then

for p � 0 we have = -'

3. If 0 F 0 is a short exact sequence of sheaves on

X then for p 0 there is a connecting homomorphism ó:

satisfying

A) The cohomology sequence

0 0 1

0 H0(X,F) —a----'

is exact.

B) Given a comutative diagram of short exact sequences on X

0
a b >N >0

0

jn
c d



the corresponding cohomology diagram

o —>H°(X,F) a
>H0(X,G)

b0 H1(X,F)
a1

Jn0

o >H°(X,A) .H0(X,8) d H0(x,c) H1(X,A)

commutes.

Proof. 1A is obvious and lB follows from Corollary 6.3.4. In our

proof of 2 we follow the notational conventions of the proof of Proposition
6.3.8. Observe that a morphism a: F G induces a morphism a°: F0 -*
and so a morphism F0 Clearly the diagram

0 -F F0 >Fo >0

Tao_____
0 >G 'G0 >0

commutes. Proceeding inductively, we see that for j � 0 we have

morphisms a1: F1 + such that the diagrams

o 'F

I I
—j+l

0 >G1 >01+1

commute. Hence we have the commutative ladder of long exact sequences:

d

O F '
1

1

1a a
d

O
1

and hence the corresponding commutative diagraorn of sections:

d*

o —F(X)
0 F1(x) .L

I 10 Ii
i

a i a
1 4 d* 4

O >0(x) C >G0(X) 0 >G1(X)



Suppose a The conunutativity of the diagram implies

that d*(ais) — aid*s — 0. Hence ai(Ker(d*)) c Ker(d*). Similarly,

a (lm(d* )) c Im(d* Therefore, a induces a homomorphism

a : H (X,F) + Properties 2A, B, C all follow straightforwardly

from the definition of the induced maps on cohomology and the naturality

of our constructions and we leave their verification to the reader.

It remains to prove 3. Take canonical resolutions of the sheaves

F, G, U. As in the proof of 2 we have an induced sequence between

these resolutions and a corresponding coimnutative diagram of sections, 8

typical portion of which is displayed below.

j—l
o , > >0

1

o , a )

Id Id
4 j+i 4 I

o ' a
Gj+i(x)

b >0

Id
$

j+l
j+2 + j+2 +

o
a b >U(X) >0

Observe that the rows in the diagram are all exact since the sheaves

and are all soft. We now show how to define the connecting

homomorphism H3(X,H) -.

H a H for some

G Since — we see that — 0 and so there

exists F a F (X) such that — d (G). But aj+2d (F) —

d +18 (F) d d (C) — 0. Since a is injective it follows that

— 0 and so F defines an element of H (X,F). We claim that

the class of F in depends only on a and not on our choices of

H, G and F. Granted this, our construction defines the connecting

homomorphism ,5: + Suppose that H', G' and F' are

the result of another sequence of choices. Since H—H' defines the

zero element of there exists 11

H — for some a 0 (X) and so
j

J — i—i
b (C—C' — 0. Hence C—C' = for some €



Now — d1a1(F) — d1(G) —d1(C') —

and so, since aj*l is injective, we have F—F' — d1(F). Therefore, F and

F' define the same class in

The proof of 3A involves a straightforward diagram chase and we

leave details to the reader. To prove 38 we take canonical resolutions

of the sequences and form the corresponding 3—dimensional commutative

diagram of sequences of sections. Given ci c H1(X,H), we construct, as
above, elements H, C, F such that the cohomology classes of H and F define
ci and Sn respectively. It now suffices to observe that the class of
w1H is and that w1H, 41G, is a sequence defining Hence

u1416. The conimutativity of the squares not involving ,5 is, of
course, immediate from 2C. 0

Theorem 6.3.11. Let 0 + F F0 F1 __!_, F2 ... be
a resolution of the sheaf F. Suppose that H1(X,Fk) 0, j > 0, k � 0.

Then

H0(X,F) Ker(d*)/Im(d*1), p > 0.

Proof. Let K1 — Ker(dj), j � 0. The exactness of the resolution

of Fisequivalent to the exactness of the sequences

0 F1 0, j � 0

Take the long exact cohoinology sequences of these short exact sequences:

HP(X,KJ+1) ÷ —p

Since H"(X,F1) 0, p > 0, we see that

A.... p > 0, j � 0

We also have the initial portions of the long exact cohomology sequences:

+ 0

and so H1(X,K1) Now

and so
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B.... j � 0.

By repeated application of A and one application of B we see that

for p > 0

— ...

Finally the result for p — 0 follows from the exactness of the
sequence

0 H0(X,F) H0(X,K1) . 0

As an immediate consequence of Theorem 6.3.11 together with lB of

Theorem 6.3.10 we have

Corollary 6.3.12. We can compute the cohornology of X with coeff-

icients in F using any fine (or soft) resolution of F. In particular,

Properties 1 — 3 of Theorem 6.3.10 determine the cohomology groups

up to Isomorphism.

Remark. Suppose that j 0, are the groups of another

sheaf coholeology theory for X. That is, we suppose that the groups

satisfy all the properties listed in Theorem 6.3.10. By

Corollary 6.3.12, we have for all sheaves F on X. It

can be shown that this isomorphism is natural — in particular, commuteS

with connecting homomorphisms. For the general proof the reader may

consult Godeinent [1]. We shall prove the existence of this natural

isomorphisni for the case of cohomology later in the section.

Examples.

3. Let X be a topological manifold. Taking the canonical resolution

of the constant sheaf we may define the cohomology groups

p � 0. We may also define the singular cohomology groups

of X (see Spanier El], Greenberg [1]). We claim that

Z), p � 0. First, let denote the abelian

groups of integral singular p—chains on the open subset U of X. Then

— is the group of singular integral p—cochaths

on U. We let 0 — -p denote the coboundary



homomorphism. The assignment U defines a presheaf on

X and we let denote the corresponding sheaf, p � 0. Since D

commutes with restrictions, we arrive at the sheaf complex

D

A....

By definition,

Ker(D8)

— Ker(D*)/Im(D*1), p � 1.

We claim that (A) is a fine resolution of Z. Exactness follows

since every point of X has a neighbourhood base of contractable open

neighbourhoods which have vanishing singular cohomology by standard theory.

To prove fineness of the sheaves first observe that —

sheaf of germs of discontinuous sections Hence s0(FL) is fine.

Suppose that p > 0 and a s K c X closed. By Lemma 6.1.12, a

is the restriction of a continuous section of over some open

neighbourhood U of K. Let be the (continuous!) section of s0(FL) over

X defined by 1KIK 2 1, 1KIX\K tO. Since is a sheaf of

S0(TZ)—modules, 1K is a continuous section of over X extending a.

We may now apply Corollary 6.3.12 to obtain the required isomorphisins

between and HPi (X,FL). We conclude this example by making two

additional remarks. First1 replacing FL by any abelian group C (or
commutative ring with 1), we can repeat the proof to obtain isomorphianis

between and Secondly, If X Is a differential manifold

we may define the sheaves of smooth (that is p—cochaina on X.

It Is a basic and well known fact in differential topology that the
D

1
complex 0 -* FL ... continues to define the singular

cohomology groups of X. In particular, the complex is a fine resolution

of FL

4. Let X be an n—dimensional differential manifold and

o Cf
-' ...

0 be the de Rham complex of X. Since the
sheaves are all fine, the de Rham complex is a fine resolution of the
constant sheaf Cf. Let



— ICer d: C0(X) -' C1(X)

— Ker d: C1'(X) +

Im d:

denote the de Rhwn cohc*nology groups of X. Corollary 6.3.12 implies

the t

p � 0.

In particular, 0, p > n.

We showed in Example 3 that and we shall nov

describe an explicit isomorphism between and For

p � 0 we define a sheaf morphism Ii': C1' + ST'(cI) by integration of chains:

I C1'(U), C E

By Stokes' theorem, we see that commutes with the differentials d, D

and so we obtain a commutative ladder of exact sequences:

o ->0 "C°
d d

I

O—*tI

The morphisms induce the de Rham isomorphisms between and

8P
sing

Finally we should point out that the de Rham isomorphisms actually give

an aZ.gebra isomorphism between the de Rham and singular cohomology

groups (the algebra structure on the de Rham and singular cohotnology
groups is given by wedge and cup product respectively). The reader

may find a proof of this stronger statmment in Warner (1].

5. Let X be an n—dimensional complex manifold. For p � 0, we have

the Dolbeault complex

0 _L ...
0

Since the sheaves are fine, p,q � 0, we therefore obtain the

Do ibeaul t ieccnorphisme
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Ker a:
, q � 0.

Im a: (X) +

In particular,

-*

, q � 0
Im a: c ,q—

(X) C

If E is a holomorphic vector bundle on X, we have the Dolbeault

complex

0 0

and corresponding Dolbeault isomorphisms

Ker
, p,q � 0

Im a: (M,E)

6. We have the short exact sequence 0 0 + N Mb -+ 0 of sheaves

over any complex manifold X. Take the initial portion of the long

exact cohomology sequence:

0 H0(X,0) R°(X,M) -. H0(X,MI0)

A(X) M(X)

Given the data a e H0(X,N/0) for the Cousin I problem on X, we see

that we can solve the Cousin I problem for a if and only if &i — 0 in

141(X,0). In particular, X will be a Cousin I domain If and only if
lie 6 — 0 in Later we shall see that R1(X,0) — 0 whenever X

Is a Stein manifold and so Stein manifolds are Cousin I domains.

7. Let Z be an analytic subset of the complex manifold X. We have

the short exact sequence

0 -'.
-* -. 0

of sheaves over X and corresponding initial portion of the long exact

cohomo logy sequence:
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+E°(x,Oz) LH'(X,lz)
p I

A(X) A(Z)

Suppose f £ A(Z). Then f is the restriction of an analytic function on
X if and only if óf — 0. In particular, if H'(X,Iz) 0 every

analytic function on Z extends to an analytic function on X. We shall

see later that this cohomology group vanishes whenever X is Stein.

Examples 6 and 7 above should convince the reader of the

importance of computing sheaf cohomology groups in complex analysis.

For the remainder of this section we develop cohomology

theory for sheaves over a paraconipact space. As we shall see

theory is computable — at least for all the examples that interest us —

and is also isomorphic to the sheaf cohomology theory we have already

constructed.

Let U . {U1: I e I) be an open cover of X and p be a non—negative

integer. Given a — .,s ) set U5 U n ... a U . A
p

p-cochain of U with values in F is a map c which assigns to each

a a section c5 F(U5) and for which c5 is an alternating

function of a. That is, c — —c
..Sj. Se..

0 � I < j � p. We let denote the abelian group of all

p—cochains of U with values in F.

For p � 0, we define a coboundary operator 0:

by

p+l
2

(Dc) , a c

j0

A simple computation shows that = 0. We let

— {c c Dc — 0); B1'(U,F) — (Dc: c

denote the groups of p-cocyotee and p-coboandariea respectively. Here

we take —0 and 80(U,F) 0. Since D2 0, is a

subgroup of and we let denote the quotient group

We call the pth. coho.noiogy group of U
with valuee in F.
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Example 8. The data for the Cousin A (reap. Cousin B) problem
1 1

on a complex manifold defines a class in H (11,0) (reap. H (11,0*)).

Lenina 6.3.13. For any sheaf F on X we have

H0(U,F) F(X).

Proof. Certainly Z0(U,F) H°(U,F). But if c Z°(U,F),

cj_cj — 0 on for all i,j t I. Hence we may define f F(X) by

fjU1 c1. 0

Lema 6.3.14. Let a:F ÷ 0 be a morphism of sheaves over X. For

p � 0 we have induced maps satisfying

A. ag: H°(U,F) H°(U,G) Is precisely the map on sections induced

by a.

B. If a is the identity map of F, then is the identity, p � 0.

C. If a: F + G, b: 0 -. H are morphisma of sheaves over X then

— p � 0.

Proof. Elementary and left to the reader. 0

Lenina 6.3.15. Suppose that F is fine. Then 0, p > 0.

Proof. Let V — j J) be a locally finite open refinement

of U chosen such that there is a map J I with c i J.

Choose a partition of unity for the sheaf F which is subordinate

to V. Let c For j J, define e by

= 0 if U5 n — 0

— if U5 n 0

(Here c is defined to be zero outside V ). A simple
j . j

computation shows that for all a we have

— njc8.
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Set b — bi. Since (ru) is a partition of unity, we see that

I

DB = c. Hence 0. 0

Remark. To prove this result we needed to know that F was fine

and not just soft. It is for this reason that we put "fine" rather

than "soft" in lB of Theorem 6.3.10. See also Godement [1; Theorem
5.2.3, Chapter 21.

Theorem 6.3.16. Let F be a sheaf on X and U be an open cover

of X. For p � 0 we have a canonical homomorphism

p(U): satisfying

A. If a: F -' G is a homomorphism then

p(U)

coimnutes.

B. If — 0 for all s E and p > 0, then p(U) is an

isomorphism (Leray 'a Theorem).

Proof. Undoubtedly the most elegant proof of this result uses
spectral sequences — see, for example, Godement [1J. Our proof is an
elementary diagram chase:

d d d
Set F1 F and let 0 -, F1 —2—'F1 ... denote the

canonical resolution of F. For s e we have the sequence of
sections

d d
0 F1(u5) —l F0(U5)

and so, taking the direct sum over we have for p � 0 sequences

d d

A.... 0 -. —1



Associated to each of the sheaves j � —1, we have sequences

0 0

B.... 0 +

Here denotes the inclusion map and is the appropriate coboundary

operator for j � 0. Since is fine, j � 0, the sequences B are exact

for j 0. Combining the sequences A and B we arrive at a commutative

diagram of sequences the initial portion of which is displayed below.

1 d 1 d 1 d

o F1(x) >
- 1

d d d

o >C0(U,F1)

10 d
100

d

o )rC1(U,F1) C'(U,F0) 0 )C'(U,F1) -

1D1

:

101

The columns of this diagram are all exact, save the first. We now show

how to construct the required homomorphism p(U): HP(U,F) + HP(X,F).

Let c0 e represent the class a a RP(U,F). We construct

inductively a sequence cj £ which satisfies

0 j � p.

Suppose that we have constructed i � t < p+l. Then

0 d c d 0 c d d c 0. Hence by exactness of the
p—r r—l r r—l p—r r r—l r—2 r—l

(r+l)th. column, there exists Cr+l E CP_r_l(U,Fr) such that
0 c d c . This completes the inductive step. Nov
p—r—l r+l r—l r

t F(X). Observe that — — dd1c = 0 and

so, since D1 is injective, dpcp+1 0. Therefore a

defines a class in It is straightforward to verify that this

class depends only on a and not on our choices of c0,. Our

construction therefore definer the required homomorphism p(U).
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Property A of the Proposition follows immediately since the

sequence is mapped by a into a sequence c0,.

defining p(EJ) (a(a)).

If the conditions of B hold then rows, as well as columns, of

our diagram are exact (excluding initial row and column) and so, by

symmetry, we may construct an inverse for p(U). 0

Remarks.

1. We call a cover satisfying the conditions of 18 a Leray cover

(for F). Notice that the existence of a Leray cover for F may imply

that higher dimensional sheaf cohomology groups vanish. Thus, if

U5 0, s £ p � p0, we see that &'(X,F) 0, p � p0.

2. It is clearly important to find Leray covers for a given sheaf F.

For example one can show, using a Riemannian metric, that every

differential manifold has a cover by convex open sets (Helgason [1;

page 54]). Since intersections of convex sets are convex and convex

sets are contractible, it follows that differential manifolds admit

Leray covers for the constant sheaves IR, etc. At a much

deeper level, we shall show later that Stein open covers of a complex

manifold are Leray covers for an important class of 0—modules.

3. The proof of Theorem 6.3.16 clearly works for any fine resolution

of F — not Just the canonical resolution. We frequently use this

observation in the sequel.

Example 9. Let U {u1} be an open cover of the differential

manifold X. We give an explicit computation for the map

p(U): in case p • 2. First choose a partition

of unity of X subordinate to the cover U. Let {Cijk) t

respresent the class e Define by

Certainly we have dl(cjjk} Again define

e C (U,C1) by
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We have Finally observe that d$k d41 on Ukl

and so y • {d$k} is a well defined closed 2—form on X which represents

the class p(U)(cx) in The construction for p 2 is similar.

Proposition 6.3.17. Let U, 1/ be open covers of X and V be a

refinement of U. Given a sheaf F on X there exists a canonical

homomorphism

p(U,V):

8at isfying

1. The diagram H1'(U,F)

commutes, p � 0.

2. If a:F 6 is a morphism, we have

p 0

3. If W is a refinement of V, we have p(U,W) p(V,W)p(U,V).

Proof. Let V {Vj: j J}, U — {Ui: i c I) and fix a

mapping J I satisfying c i J. Given

c e define by

p+l($c) — s
=

I

Since $ obviously commutes with the coboundary operators D, 4 induces
a map + We claim that is independent of the
choice of Suppose that •' is another refinement mapping. We

construct a "homotopy" operator H: between $ and •.

To do this we first give J a total ordering. Then if ...
<

and c we define

p(V)
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(Hc)9

-

Extend H to all cochains by requiring that H is alternating in a.

Computing we find that

HD + DH — $'

Hence, if c a we have a BP(V,F). Therefore —

and we may set p(U,V) — &,, for any choice of refinement mapping $. The

proofs of the remaining statements of the proposition are elementary

and we leave details to the reader. 0

An irmaediate corollary of Proposition 6.3.17 is that

constitutes a direct system. Hence we may define

—

We call the pth. cohomology group of X with coefficienta

in F.

By part 1 of Proposition 6.3.17, we see that for p � 0 we have

canonical homomorphisms

x(U):

X: +

These homomorphisms satisfy the usual naturality properties. For

example, if a: F G is a morphism of sheaves we have induced

homomorphisms + satisfying the conditions of part

2 of Theorem 6.3.10 and

—
,

p � 0.

Theorem 6.3.18. For paracompact spaces, and sheaf

cohomology groups are isomorphic.

To prove this result, it is sufficient to show that the tech

groups satisfy all the properties of Theorem 5.3.10. in view of what

we have proved already, it remains to construct a long exact cohomology



sequence for L Actually, we shall prove a little more. We shall

show that and sheaf cohomology theory are canonically isomorphic

with canonical isomorphisms being given by the maps x. In particular,

we shall show that the maps x commute with connecting homomorphisms.

Theorem 6.3.19. Let 0 + F -'• 0 be a short exact

sequence of sheaves on X. For p � 0 we have a connecting homomorphism

5: + satisfying

A. The cohomology sequence

0

is exact.

B. The diagram

vO vO vi

o
b

4 0
4x

o B°(X,F) b
H°(x,H) -° )H1(X,F) a

commutes.

Proof. Let U be an open cover of X and p � 0. Set

— Then the sequence

0 + C1'(U,F) +

c we may define the "cohomology"

group 111'(U,#l) to be Exactly as in the proof of 3

in Theorem 6.3.10 we may define a connecting homomorphism

and obtain a long exact sequence for the

cohomology groups H*(U,F), B*(U,G), Everything commutes

with direct limits and so we arrive at the long exact cohomology

sequence

+
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We claim that For this it suffices to show that if

h we can find a refinement V j J} of LI {U1: I e I)

and refinement map J I such that 4h Since X is

paracompact, we may assume that U is a locally finite cover of X. Let

w — {w1J be a refinement of U such that c Up i I. Choose an

open neighbourhood of each point x X such that

a)

If x a then c

b) continue to hold for open neighbourhoods

of x contained in Since b: G U is surjective we may, shrinking

if necessary, find such that Choose a

refining map 4,: X -' I for the covers V — x X) and U satisfying
x W4,() for all x X. Let t and suppose

Vt # By choice of 4,, Vt n # 0, 0 � j p, and so by a)
0

c 0 a a Hence c where we have used the

abbreviated notation 4'(t) for For t a we define

by

to

Clearly h$(t)IVt. Hence a FY(V,H).

All that remains to be proved is statement B of the theorem. For

this we take canonical resolutions of F, G and U, fix an open cover U

of X and take appropriate complexes of cochains over each term in the

canonical resolutions as in the proof of Theorem 6.3.13. We obtain a

3—dimensional commutative diagram of sequences. It is then a straight-

forward diagram chase to verify that the definition of

is compatible with that of 6:

Essentially we have to check that the maps p(LI) map the defining

sequences for 6 down to defining sequences for 6. We omit the lengthy

details. Finally take direct limits. U
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Remarks.

1. An alternative construction of the long exact sequence of

cohomology, based on sheaves of cochains (cf. Example 3) may be found

in Godement [1].

2. The paracompactness assumption implicit in Theorem 6.3.19 is

essential: tech cohomology need not be exact for non—paracompact

spaces. However, Leray's theorem continues to hold and this fact was

exploited by Serre in his foundational paper on coherent sheaves in

algebraic geometry (Serre [2]).

We end this chapter with some important examples and computations.

Examples.

10. Let X be a differential manifold with structure sheaf 9 and let

9* denote the (multiplicative) sheaf of groups of units of 9. We

claim that the group CLB(X) of isomorphism classes of complex line

bundles on X is canonically isomorphic to H1(X,9*). Let H1(X,9*).

Nov m and so we may find an open cover U — {Ui) of X

and e Z2(U,9*) such that X(U) maps the cohomology class of

to The cocycle conditions on imply that
—

i,j,k I. Since a' CL(l,0), we see that the are the

transition functions for a complex line bundle on X. We leave it

to the reader to check that dependa only on and not on our

particular choice of cover or cocycle and that the map is an

isomorphism of H1(X,9*) with CLB(X).

We may use this isomorphism between CLB(X) and H1(X,9*) to define an

important topological invariant of complex line bundles. First

observe that we have an exact sheaf sequence

0
19 exp 9* 0.

Here i: Z +9 denotes the inclusion and exp: 9+9* is defined by

— exp(2lTif(x)), x E U, f 9(U). The surjectivity of exp

follows by noting that expu has inverse on simply connected

open subsets U.
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Consider the following portion of the long exact cohomology sequence

-' fl1(X,9) + &(x,9*) —LR2(X, 72)

Since is a fine sheaf, B2(X,9) — 0 and so

6: H1(X,9*) 72). Suppose L £ is a complex line bundle.

Define c1(L) — —6(L) a H2(X, 72). We call c1(L) the first Chern

of L. We see that L — the trivial line bundle — if and only if

c1(L) —0. Fix an open cover U — (Ui: i a I} of X such that all

intersections U5, s a p 0, are contractible. For example, we

can choose a cover of X by contractible open sets (see Remark 2 following

Theorem 6.3.16). Applying Leray's theorem, we can see that

72) m H2(U, 72) and m Given L £ CLB(X) we may

therefore find transition functions for L defined relative to

the cover U. Every intersection is simply connected and so we may

choose a branch of on each The cocycle conditions on

imply that for all i,j,k 1,

cijk — + + a $

and so a By the construction of the connecting

homomorphism, it follows that (c1 is a representative for

c1(L) £ 112(X 72).

11. Let X be a complex manifold. As in Example 10 we have a short

exact sequence

SXP)O*+Q

of sheaves on X and we see that H1(X,O*) is isomorphic to the group

HLB(X) of holomorphic line bundles on X. We have the commutative

diagram

)H1(X,O)
6

72) —>

______

4

______

4

______

II

______

6 3H2(X,Z)



Here the vertical maps are induced by the natural inclusions of 0 in

Q, Q* and the identity map of 72. Hence, as in Example 10, the

map H1(X,0*) -+ H2(X, 72) is minus the first Chern class map.

However, the map will, generally not be an isomorphisrn as neither of

H1(X,0) and H2(X,O) need vanish. This is just a reflection of the

fact that a holomorphic line bundle may be trivial in CLB(X) but not
trivial in HLB(X). The existence of a Leray cover for 0* is now a

non—trivial matter as it depends on being able to find covers which are

Leray for 0 as well as 72.

12. We continue with the notation and assumptions of Example 11.

Let j: 72 -, denote the inclusion map of constant sheaves. We have

the commutative diagram

HLB(X) H1(X,0*) )H2(X, 72)

Here 0: H1(X,0*) ÷ is defined to be the composition of ô with

j and the canonical isomorphism between and We let

— —0(L) L a HLB(X). We are going to give an

explicit representation of as a closed 2—form on X. Suppose

that are the transition functions of L a HLB(X) relative to

some open cover U {u1) of X. As in Example 10 we may and shall

assume that all intersections U5 are contractible. As we showed in

Example 10, c1(L) a H2(X, 72) is represented by the cocycle

{cjjk} + +

Let us assume for the moment that there exist {ai} such that

i 2
—

(This amounts to claiming that L*a1* in CLB(X)). As in the proof

of Theorem 6.3.16 (see also Example 9), we first construct

{f1} a C0(U,C1') such that

0
H2(X,U)

ii
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1
—

—

For this we may take
—

since

lOS$jj + loaaj — loga1

and so

— 9loga1.

Our required 2—form representing cl(L)a is then given by

— —

1
—

—

• (—

Notice that is represented by a (1,1)—form. In Example 15 we

shall show that every "integral" (1,1)—form is the Chern class of some

holomorphic line bundle. The reader should also observe that we do

not really need to assume that the domains U1,1 are simply connected

as the indeterminancy in drops out when we take exterior

derivations.

Finally, let us justify our assumption that L*.L* is

isomorphic to the trivial line bundle. First observe that is

the space of Hermitian forms on z E X. Now any convex combination

of positive definite Hermitian quadratic forms is positive definite.

Therefore, taking trivialisations of L over U, we may choose a smooth

section of over each which defines a positive definite

Hermitian form on the fibres. Clueing together using a smooth partit-

ion of unity we obtain a global section of which restricts to

a positive definite Hermitian form on the fibres. Hence we have

obtained a non—vanishing smooth section of

13. We compute the 1st. Chern class of the hyperplane section

bundle H of Let U — {u0,U1} be the open cover of P1(ct)

corresponding to the canonical atlas. The transition functions for
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the hyperplane section bundle are given by

•01(z0,z1) —

and setting
2 2 2

a0(z0,z1) — 1z01 /(1z01 + fz11 )

2 2 2a1(z0,z1) — 1z11 /(1z0) + 1z11 )

we see that iOli
—

Hence our representative p for is

given by p — — {— Setting z01z1 — t, we see that

p1(t) — — ti2))

—

Now for compact Riemann surfaces, integration defines a canonical

isomorphism and so we may regard cl(H)a as lying in

Thus

ci(H)e fi I)p (G)

—
J

(i+itI2Y2dtdE

j I (l+r2Y2rdrdO

- +1.

Since B2(X, for compact Riemann surfaces, we have proved

c1(H) +1. Our choice of sign for c1 was made precisely so that the

hyperplane section bundle of had positive Chern class...

14. Let L be a holomorphic line bundle on the compact Riemann

surface L and suppose that M*(L) # 0. Recall (proposition 1.5.7) that

if s e M*(L) then deg(div(s)) is independent of s and that the degree

of L, deg(L), is defined to be deg(div(s)). Using the canonical

isomorphism of 112(M, with we may regard c1(L) as lying in Z

We claim that c1(L) — deg(L). Fix a s M*(L) and let
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div(s)
—

Choose a finite cover {Ui: i—1,...,m} of H

satisfying

a) is holomorphically trivial.

b) a1 c

c) There exists an open neighbourhood of each such that

V1 is biholomorphic to the unit disc in and V1 a U U4 — 0.
i#i ,J

Denote the corresponding set of transition functions for L by

{$Jk: C}. Let denote the local representative of son U1.

Then 5k will be holomorphic on Ulk, j k, and

2 2 2
— on

For i > n, set gj — For i � n, we may, using bump functions,

modify to obtain a C°° positive function on U1 satisfying

2

—

In particular, — and, by condition c) above, we will have

2

1jk' — on Ujk for all j,k

Hence, by Example 12, we have

c1(L) —

c1(L)
—

J5aioggj

Now
—

and so, by Stokes' theorem,

0
c1(L)

—

—
) I dlogs1

i—i
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—

n1. by the residue theorem.

— deg(L).

15. We showed in Example 12 that the Chern class of a holomorphic

line bundle on X could be represented, via the de Rham isomorphien,

by a closed (1,1)—form on X. We shall now show that every integral

closed (1,1)—form is the Chern class of some holomorphic line bundle
on X (modulo torsion). Let j: 72 C denote the inclusion map of
constant sheaves and denote the subgroup of admitting

representatives by closed (1,1)—forms. Set }I"'(X,72) njH2(X, 72)

We claim that cl(Hl(X,O*))C — H1'1(X, 72). Let i: Z + 0, k: C -' 0

denote the inclusion maps of the constant sheaves 72 , C in 0. We have

the commutative diagram

c1
) H2(X, 72) H2(X,0)

H2(X,C)

Since we already know that cl(Hl(X,0*))C c H1'1(X, 72), it is enough

to prove that — 0. Taking the de Rham and Dolbeault

resolutions of C and 0 we have the commutative diagram

o >C
d d

4k 41
—

o

where the morphism -' is just projection of p—forms onto

the (O,p)-component. The map &'(X,O) is therefore
represented by

Ker(d)

n
C1'(M)
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Since Q2 maps (1,1)—forms to zero it follows that the image of

in H2(X,0) is zero.

16. Associated to the divisor sequence 0 0* -# M* + 1' + 0 on a

complex manifold X we have the long exact sequence

0 -* H°(X,0*) H0(X,N*) H°(X,P) -*

A I I U

A*(X) M*(X) V(X) HLB(X)

Recall from §9, Chapter 5, that we have a homomorphism

t 1: V(x) -# HLB(X).

By the definition of 6 in theory it is clear that

6(d) — —[d], d 0(X).

So we see again that a divisor d is the divisor of a meromorphic

function if and only if [d] is a holomorphically trivial line bundle.

Recalling from Example 12 that the Chern class map c1: HLB(X) -#

is defined to be minus the connecting homomorphism 6: HLB(X) +

we see that c1(fd]) — 66(d). In suimnary, we see that for a divisor d

to be the divisor of a meromorphic function there are precisely two

obstructions. Firstly a topological obstruction; c1([d]) must be zero;

secondly an analytic obstruction; [dl must be holomorphically trivial.

For the remainder of this example, we shall assume that X is projective

algebraic. We shall show later that every holomorphic line bundle on

X admits a non—trivial meromorphic section. This clearly implies that

the image of H1(X,0*) in H'(X,M*) is zero and so we obtain the exact

sequence

0 A*(X) + M*(X) - 0(X)

HLB(X) V(X)/L(X), where L(X) is the group of linear equivalence

classes of divisors on X.
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From Example 14, we see that given Ti c H"(X,?Z), there exists

d a V(X) such that — Ti. It may be shown (see Griffiths and

Harris Cl]) that d defines a class in which is the

dual of Ti with respect to the pairing )c

So we have a special case of the Ilodge conjecture due to Lefachetz:
11 —Every class in H (X,72) has a Poincare dual represented by an integral

combination of analytic hypersurfaces in X (modulo torsion).

Finally let Pic(X) denote the subgroup of HLE(X) consisting of

holomorphic line bundles which are trivial as complex line bundles.

Thus Pic(X) Ker(c1). Since X is compact it is easily seen from the

cohomology sequence of 0 o
exp

÷ that
Pic(X) Furthermore it can be shown that Pic(X)

has the natural structure of a compact connected complex Lie group.

That is, a complex torus. Pic(X) is called the Picard variety of X.

The Picard variety is an important birational invariant of X. It is

an Abelian variety (for this it is sufficient that X be Moishezon).

Proofs of these statements, together with further references, may be

found in Ueno [1] and Griffithe and Harris [1].

Exercises.

1. Verify that

a) — 0, p 1, for every domain D in

b) — 0, p 1, q � 0, for every open polydiac D in

2. Let C be a group, not necessarily abelian. Show how to define

and prove that is isomorphic to the set of

isomorphism classes of n—dimensional complex vector bundles on X.

3. Prove that the map p(U): H1(U,F) H1(X,F) is injective for all

open covers U of X.

4. Verify that the de Rham cohomology groups of a differential

manifold are topological invariants (as opposed to differential

topological invariants) without using the isomorphism between singular

and de Rham groups.
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5. Let X be a Riemann surface. Verify that the sheaves V and N/V

are soft. Is this result true for general complex manifolds?

6. Show that Pic(X) {t) in case X is any domain in or an open

polydisc in

7. Prove that c1(TP'(t)) — +2.

8. Z • Let H denote the hyperplane section bundle

of Prove that c1(H) generates

9. Let f: X + Y be holomorphic and L a HLB(Y). Prove that

—

10. Let T be an n—dimensional complex torus with period

lattice A and suppose that L(H,m) is a holomorphic line bundle on T

(for notation, see §9, Chapter 5 and recall that H is an Hermitian form

on whose imaginary part is integral on A x A). Prove

a) The function a(z,t) — on x is
invariant under the action

(z,t) + (z+A,exp(—1T(2Re(H(z,A)+H(A,A)))1t12), A A.

Deduce that a induces a smooth map L(H,m) + P which is

quadratic on fibres (see also Exercise 6, §9, Chapter 5).

b) The first Chern class of L(H,m) is represented by the form

—
—

c) Every 1—dimensional complex torus admits a holomorphic line

bundle of Chern class +1 (Integrate over a period

parallelogram).

11. Recall that a sheaf F of groups over a topological space X (not

necessarily paracompact) is flabby if for all open subsets U of X the

sequence F(X) F(U) + 0 is exact. Prove

a) If 0 F + G -. K -' 0 is an exact sequence of sheaves over X

and F is flabby then the sequence is presheaf exact. If, in

addition G is flabby, deduce that K is flabby.

b) If X is paracompact, then F flabby implies F soft.
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12. Let X be a closed subset of the topological space 2 and F be a

sheaf of groups on X. As in exercise 4, §1, let F denote the trivial
extension of F to Z. Prove that for p � 0, m

(Look at the trivial extension of the canonical resolution of F).

13*. Let f: X -# Y be a holomorphic map between complex manifolds and

F be a sheaf of Ox—modules on X. For p � 0, let be the sheaf

of on Y associated to the presehaf ii + HT'(f'(U),F). Show

that for any exact sequence 0 F G -, H + 0 of Ox—modules on X, the

induced sequence

0 -, -, -p...

is exact.

14. Let f: X Y be a homeomorphism between topological spaces X and

y, F and 0 be sheaves on X and Y respectively and a: G F be a morphism

of sheaves covering Show that for p � 0, we have naturally

induced homomorphisms

f(a)*: &'(X,F)

(Use theory).

15. Let f: X -4- Y be a continuous map between topological spaces X,

Y and F be a sheaf on Y. Show that there exist homomorphisms

f*: 4- H1'(X,f 1F) satisfying

a) If f — Id, then f* Id.

b) If g: Z -, X is continuous then (fg)* g*f*.

c) The construction of f* is compatible with the construction

of Q14, in case f is a homeomorphism and a is the inverse of
-lthe natural map r: f u +
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CHAPTER 7. COHERENT SHEAVES

Introduction.

In section 1 we define coherence for sheaves of 0—modules and

prove Oka's theorem. In section 2 we prove Cartan's theorems A and B

for Stein manifolds assuming exactness of the s—sequence. The remainder

of the Chapter is devoted to applications of Theorems A and B. We

prove Cartan and Serre's finiteness theorem in section 3 and Crauert's

finiteness theorem for coherent sheaves on s.L.p. domains in section 4.

Using the finiteness theorem of Cartan—Serre, we prove Serre's theorems

A and B for coherent sheaves on complex projective space in section 5.

We give a number of applications including Grothendieck's theorem on

the splitting of holomorphic vector bundles on the Riemann sphere.

Finally in section 6 we prove Kodaira's embedding theorem, following

Grauert, and conclude by showing that complex tori that admit a Riemann

form are algebraic.

§1. Coherent sheaves.

Throughout this section we shall be studying sheaves of 0—mod-

ules on a complex manifold H (Here, as in the sequel, we usually drop

the subscript "N" from the Oka sheaf In future we call a sheaf of

0—modules an analytic eheaf. We have already seen some examples where

algebraic conditions holding at a point continue to hold in a neighbour-

hood of the point. Thus the condition that germs of analytic functions

be relatively prime is an open condition (Proposition 3.4.2). Another

important example came from the theory of analytic hypersurfaces where

we showed that if Z was an analytic hypersurface in H with —

then — for y in some neighbourhood of z (Theorem 3.5.16).

The main aim of this section will be to describe the class of coherent

analytic sheaves for which this type of behaviour is characteristic.

For example, we shall show that if F is a sequence of

coherent sheaves with ba — 0 and if the sequence is exact (at stalk

level) at x s M, then it is exact in a neighbourhood of x. Of course,

if we wish to use topological methods to get global results then our

local results need to be framed in terms of open sets — not points —

and this is why coherence is such an important concept in the cohomology
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theory of sheaves. Our proofs will be close to those in the original

works on coherence by H. Cartan [1,2] and J.P. Serre [2].

Definition 7.1.1. An analytic sheaf F on M Is said to be of

finite type if we can find an open neighbourhood U of every point x in

H and a finite number of sections s F(U) such that

{si y'•••'5k
generates as an for every y E U.

Example 1. The sheaf of sections of a holomorphic vector

bundle on H is of finite type.

Proposition 7.1.2. Let F be an analytic sheaf of finite type

and be continuous sections of F defined over some open

neighbourhood of x H such that f1 ,. ..,f generate F Then
Ix p,x

f11y1_
y

generate for y in some neighbourhood of x.

Proof. Since F is of finite type we can find an open

neighbourhood U of x and sections sl,...,sk E F(u) such that

5j generiite F for y U. By assumption, there exist
,y ,y y

a 0 such that
ij,x x

s a f , i 1,.. .,k
i,x ij,x j,x

Choosing representatives for the germs we see that on some

neighbourhood V of x we have

Si
-

i - 1,... ,k.

Hence for all z V we have

5i,z
. 0

For q 0, recall that 0q denotes the p—fole direct sum of 0

and that 0q is equal to the sheaf of germs of holomorphic

functions on H. We have a canonical 0—module basis of 0q given by the

constant functions

E1(z) — — (0,0,. ..,l).
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Suppose that F is an analytic sheaf on H and that f1,.. .,f

are continuous sections of F over some open subset U of H. Let

f (f1,.. denote the sheaf homomorphism defined by

(up. z c U.

The kernel of f is a subsheaf R(f1,. of called the sheaf of

relations between

Theorem 7.1.3. Let U be an open subset of H and

Then the sheaf of relations is a

subsheaf of of finite type.

This theorem, due to Oka, is the fundamental result upon which
the theory of coherent analytic sheaves rests.

In view of the local nature of Theorem 7.1.3 It suffices to

prove

Theorem 7.1.4. Let çì be an open subset of and

We can find an open neighbourhood U of any point

2 and finitely many functions C1,... such that

C ,. . .,C generate R(f1,. . .,f ) as an for all x c U.
l,x r,x px

Proof. First of all notice that

R(f1,.. c 0), z e 0.

Since is Noetherian, is certainly finitely generated.
We have to find generators which also generate the stalks in a

neighbourhood of z.

We may clearly assume that 0 0 and that z — 0. Our proof
goes by Induction on q and n. First, suppose that the theorem has been

proved for all q in the (n—l)-.dimensional case (note that the case

n 0 is trivial). We shall prove that the theorem is true for n and

q • 1.

Without loss of generality we may assume that are

normalised in direction and so, by the Weierstraes Preparation

theorem, we may suppose that f11.. are Weierstrass polynomials in
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z with coefficients in where is an open neighbourhood of

E In what follows we may suppose — x CE. Let d denote

the maximum of the degrees of the polynomials f1,.. We may write

d
— j — 1,.. •,p,

n

where c We let denote the group of polynomials in

of degree d which have coefficients in For

we let denote thering of germs of analytic

functions on at and dAt[z] denote the germs at of functions

in dAt[Zn]• Finally, let
dg(f1

f ) denote the subset of

defined by dR(f1,...,f) —

e Note that has the structure of an 0'—module.

We shall prove the inductive step by first showing that for

all dR(f1...f) generates as an Then,

using the inductive hypothesis, we show that we can find a finite set

of generators for dR(f1...f) (as an 0'—module) over some neighbour-

hood of zero.

Step 1: The 0—nodule is generated by the elements

of dR(f1,...,f), c

Suppose has degree d. Then, by the Weierstrass Preparation

theorem, we have for ç

f f'f'I,

where f', f" e f' is the germ of a Weierstrass polynomial in

and f"O) 0. By Lemma 3.4.1, f" is a polynomial in with

leading coefficient 1. Let d', d" denote the degrees of f', f" with

respect to Given E R(f1,. we can by the

Weierstrase division theorem write

a1 + ci, i 1,.. .,p—l,

where b1 and c1 is of degree < d'. Set

p—i
— a +
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and observe that we have the identity

+

Now all the terms in this identity, except possibly lie

in Hence e Therefore

p—i
+ (c f")f' 0.

i—i
1

But the sum is a polynomial in Zn of degree < d+d'. Consequently, by

Lemma 3.4.1, is a polynomial in of degree < d. But since

— (1/f")(f"c1,...,f"c)

and have degree < d, it follows that

(c11. dR(f11...,f). This, together with (*), proves step 1.

Step 2: We may find an open neighbourhood U of 0 c f° and

sections such that for all ç e U,

generate dR(f11...,f) as an

Suppose a — Then

—

cjj E

Now a e dR(f11...,f) if and only if aifi 0. That is, if and

only if
1—0

d do
r k+j
I I I cl4flk(z ) — 0.

k—U j—0 i—i

Equating coefficients of powers of to zero we see that

a e dR(f1,...,f) if and only if

j-+kr i—i

That is, is isomorphic to the kernel of the

homomorphism F (F1,.. .,F defined by
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O,...,2d.

In other words, is isomorphic to and

so, by the inductive hypothesis, we may find an open neighbourhood U'

of 0 and C1,.. a such that C1 ,,..

generate R(F1,.. .JF for all a U'. Taking U U'

we see that C1,.. give the required generators of dR(f1,.. as

an O'—module.

To complete our induction we now show that if the result is

true for n and q 1 it is true for n and q > 1.

Setting we define —

j = 1,. ..,p. For t a we have

c

Now by the inductive hypothesis for n and q —1, there exists a

neighbourhood V c £? of 0 and a such that g1

generate the for all a V. For aV, we

have c Cj Setting gj (gj1,...,gj),

1 � ,j � r, and taking components as we see that a

if and only if

kL
C, I -

But the first q —l of these equations automatically hold and so only

the qth. equation remains to be satisfied. By the inductive hypothesis

for n and q = 1, there exists a neighbourhood U c V of 0 and

euch that the solutions (ci,...,cr) a of

0 are generated by ..,h a U.

Defining C1,. ..,C5 a by C1 h14g4, 1 � I � s, we see that
i—i

are the required set of generators for 0

Definition 7.1.5. An analytic sheaf F on the complex

manifold H is said to be coherent if
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a) F is of finite type.

b) Given any open subset U of N and sections f1,. . a F(U),

then the sheaf of relations R(f1,. is of finite type.

Theorem 7.1.6. Every analytic subsheaf of 0q which is of

finite type is coherent.

Proof. Theorem 7.1.3. 0

Corollary 7.1.7. Let F be a coherent sheaf on N, U be an

open subset of N and a F(U). Then is coherent.

Proof. is a subsheaf of of finite type. 0

Corollary 7.1.8. Let F be a coherent sheaf on N and x £ H.

Then we may find a free resolution of F, of length m — dim(H), over

some open neighbourhood U of x:

p 5 p1 p0s0
0 -' OUm ... —'Fe -# 0

Proof. Since F is of finite type, we may find an open

neighbourhood U0 of x and £ F(U0) such that for all a U0,
p0

generate F as an 0 —module. That is, setting
c

— ) we have the exact sequence
p0

p0
0 -p0.

U0 U0

Now Ker(s0) R(a?,...,s° ) and so, since ) is of finite
p0 p0

type, we may find an open neighbourhood U1 C U0 of x and

a A(U1)P0 such that generate

R(s?,. U1. Setting (si,.. we obtain the exact

sequence

p1 a p S

0
U1 U1 U1

Proceeding inductively, we obtain after m steps the exact sequence

pis S p 8
m—l —Q->F

Uml U1 U1
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By the Hubert Syzygy theorem (Theorem 3.6.1), Ker(s is a free

p

y Suppose Ker(s A set of generators

for
0m

is given by the constant functions 1 � j and, since

Ker(s1) is of finite type, it follows from Proposition 7.1.2 that the

generate Ker(sm_1)y for y in some open neighbourhood

U U we therefore obtain the exact sequence
m

01'm ...

By the Hubert Syzygy theorem, Ker(sm) 0. 0

Remarks. One consequence of Theorem 7.1.8 is that every

coherent sheaf is locally Isomorphic to the cokernel of a sheaf

homomorphism a: -, 0q• Later on in this chapter, we shall examine to

what extent coherent sheaves admit global resolutions by free, and more

expecially locally free, sheaves of 0—modules.

Example 2. The sheaf of holomorphic sections of a holomorphic

vector bundle E is coherent. Indeed, E is locally isomorphic to

q — dim(E).

Theorem 7.1.9. We have the following basic properties of

coherent sheaves;

1. Every analytic subsheaf of a coherent sheaf which is of

finite type is coherent.

2. Suppose 0 -.. F —L,H -' 0 is a short exact sequence of

analytic sheaves. If any two of the sheaves F, G, H are coherent, so

is the third.

3. The direct sum of a finite family of coherent sheaves is

coherent.

4. Let a: F G be a homomorphism of coherent sheaves. Then

Ker(a), Im(a) and Coker(a) are coherent.

5. Let F, G be coherent aubsheaves of a coherent sheaf H. Then

the sheaves F + G, F U G are coherent.
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6. Let F, G be coherent sheaves. Then Fe0G is coherent.

Proof. 1. Clearly every analytic subsheaf of a sheaf

satisfying (b) of Definition 7.1.5 also satisfies condition (b).

2.a) Suppose 6 and H are coherent. Since G is of finite type, we

may find an open neighbourhood U of any point x e ?4 and surjective

homomorphism c: Since U satisfies condition (b), Ker(bc) is

of finite type and so, by 1., c(Ker(bc)) is a coherent subsheaf of

But a maps FU isomorphically onto c(Ker(bc)) and so F Is coherent.

b) Suppose F and 6 are coherent. Since 6 is of finite type and b

is surjective H is of finite type. We must show that U satisfies

condition (b). Let x M, U be an open neighbourhood of x and

e K(U). Shrinking U if necessary, we may choose

6(U) such that — b(t3), j l,...,p. Shrinking U further

if necessary, we may find u1,. . . ,u F(U) such that u ,. . .,u
q l,y q,y

generate Fy as an for all y U. Now given y U and

(f1,...,f1)) 0", if and only if

e tm(a). That is, If and only if there exist 0

such that fiti gja(uj). But Is

of finite type since 0 is coherent and since R(s1,. ..,5p) is the image

of R(t1,...,a(uq)) under the canonical projection of on it
follows that R(s1,...,s) is of finite type.

c) We leave the case F and H coherent implies G coherent as an

exerci8e (details may be found in Serre [2] or Cunning and Rossi [1]).

3. The finite direct sum of coherent sheaves is coherent. This

follows by an easy induction from 2.c) or directly and we omit

details.

4. Suppose a: F 0 is a homomorphism of coherent sheaves. Now

Im(a) is of finite type since F is of finite type and so, by 1, Im(a)

is coherent. Applying 2.s) and b) to the exact sequences

o -, Ker(a) F Im(a) -. 0

0 Im(a) C Coker(a) 0

we see that Ker(a) and Coker(a) are coherent.
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5. The sheaf F + G is of finite type and so coherent by 1. The

sheaf F n G is the kernel of the quotient map F luG and is

therefore coherent by 2.a).

6. Let x e M. Since F is coherent, there exists an open neighbour-

hood U of x and exact sheaf sequence

0.

Tensoring with we obtain the exact sequence

-* (FS0G)u 0.

Now and so we arrive at the exact sequence

0.

But by 3, are coherent and so, by 4, (FØ0G)u is coherent.

Hence is coherent. 0

Remark. Theorem 7.1.9 suggests that set of coherent sheaves

on H is the smallest class of analytic sheaves on 14 which contains
the locally free sheaves (holomorphic vector bundles) and ia closed

under the operations of quotient, kernel and image. Unfortunately this
is not generally true, even when H is compact (the ideal sheaf of a

point need not have a resolution by locally free sheaves in case every

holomorphic vector bundle on 14 Is flat). Rowever, if 14 is projective

algebraic, then every coherent sheaf on M has a global resolution by

locally free sheaves and so the coherent sheaves on 14 are the smallest
class containing the locally free sheaves and which are closed under
the operations of quotient, kernel and image. We shall return to this
question later in the chapter.

Examples.

3. Let X be a complex submanifold of the complex manifold N. Then

the sheaves
°x are coherent sheaves on H. First we prove is

coherent. The question being local we may suppose that X is the

subspace of defined by Zk+l — — Z — 0. If
—
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For z c — (zk+l,. ..,z) and clearly
2k+l'

give a

finite set of generators for in a neighbourhood of z. Hence

is of finite type and so coherent by Theorem 7.1.6. Since
—

we see from Theorem 7.1.9, 2, that is coherent.

4. Let X be an analytic hypersurface in the complex manifold H.

Then
°x

are coherent. Theorem 3.5.16 implies that is coherent.

is coherent as in Example 3.

5. Let X be an analytic subset of M. Then
°x

are coherent.

The proof of this result is outside the scope of these notes depending,

as it does, on the local parametrization theorem for analytic sets.

The proof may be found in H. Cartan [1], Gunning [1 ;page 43],

Gunning and Rossi [1], R. Naraaimhan [1], Whitney [1].

6. Let f: H N be a holomorphic map of complex manifolds and F be

a coherent sheaf on N. Then f*F is a coherent sheaf on H. This

result follows by representing F locally as the cokernel of a map
0q

and then using the right exactness of f* — see Exercise 12,

§1, Chapter 6.

7. Suppose F is a coherent sheaf on H and f: M N is holomorphic.

In general will not be a coherent sheaf on N. However, if f is

proper, a deep and difficult theorem of Grauert asserts that is
coherent. Proofs of this important result may be found in Foster and

Knorr Cl], Kiehl and Verdier El]. See also R. Narasinhan [2]. In

case f is a finite map, the reader may consult Grauert and Remmert [1],

Gunning [1], R. Narasiinhan [1].

8. Let F be a coherent sheaf on H. Then supp(F) is an analytic

subset of H (for the definition of supp(F), see Exercise 6, §1,

Chapter 6). To see this note that we can find an open neighbourhood

U of any x c H and exact sequence

—i+Fu 0

Now supp(F) n U — {x c U: a # 0) — {x c U:s0 not of maximal
1,x

rank). Now may be represented as a q x p matrix with holomorphic

entries defined on U. The condition that a is not of maximal
0,x
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rank is given by a finite set of algebraic equations in the

components of a . Hence the set of points where s fails to be
O,x O,x

of maximal rank is an analytic subset of U. A similar argument will

show that the set of points in N where F is not locally free is an

analytic subset of H.

9. Let X be a complex submanifold of H and let denote as

well as the sheaf on H. Suppose F is a sheaf of on X

and F denote the trivial extension of F to H. Clearly has the

structure of an Ok_module and, since is an F has the

structure of an OM_moudle. We claim that F is coherent as a sheaf of

ON_modules if and only if F is coherent as a sheaf of Ox_modules.

Well suppose F is coherent as a sheaf of Obviously FIH\X

is coherent. Let x e X. We may find an open neighbourhood U of x in

X and exact sequence

+ 0.

Taking any open neighbourhood V of x in H such that V n X — U and

taking trivial extensions we obtain the exact sequence

0

But are coherent sheaves on N and so by Theorem 7.1.9, 4,

F is coherent. The converse follows easily from

Example 6.

10. Let F be a sequence of coherent sheaves on N and

suppose ba 0 and the sequence is exact at the point x E H (that Is

at the stalk level). Then the sequence is exact on some open

neighbourhood of x. To see this we note that ker(b)fIm(a) is

coherent with zero stalk at x. Now apply the result of Example 8.

Exercises.

1. Let F, G be analytic sheaves on X with F coherent. Show that

for all x X, Deduce that if F and G are

coherent then so is Ilom0(F,G).
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2. Remmert's proper mapping theorem states that the image of an

analytic subset by a proper analytic map is an analytic set. Deduce

this result from Grauert's direct Image theorem and Example 8.

3. Let (X,Ox) be an analytic space Chapter 6). Using the

result described in Example 5, show that is a coherent sheaf of

Oxlnodules, p 1. Describe the appropriate extension of Example 9

to this more general framework.

4, Show that need not be of finite type if f is not proper, F

coherent. (Hint: Take X Y a point and F

5. Let F be a coherent sheaf of Ox_modules on the complex manifold

X. Suppose that is a free for every x X. Prove that F

is locally free.

§2. Coherent sheaves on a Stein manifold.

Suppose that E is a holomorphic vector bundle on the

rn—dimensional complex manifold M. We have the associated a—complex

0 + C0'0(M,E) ...

For this section and the remainder of the chapter we shall assume that

the a—complex of any holomorphic vector bundle on a Stein manifold is

exact. In Chapter 11 we shall give a proof of this fundamental result

that depends on the theory of elliptic operators. For the present we

remark that we have proved the exactness of the a—sequence in case M Is

a polydisc or and E is trivial (Theorem 5.8.2) and indicated an

elementary proof in case M is the Euclidean disc and E is trivial

(Exercise, 2, Chapter

The Dolbeault isomorphisms (Example 5, Chapter 6) imply

that our assumption is equivalent to the vanishing of p 1,

for every holomorphic vector bundle E on a Stein manifold H. Since

the sheaf of sections of a holomorphic vector bundle is coherent we

see that our assumption amounts to a special case of the second of

the remarkable and famous Theorems A and B of H. Cartan:
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Theorem A. Let F be a coherent sheaf on the Stein manifold H.

Given x c M, we may find H0(M,F) — F(M) such that

a ,...,s generate F as an 0 —module.
1,x p,x x x

Theorem B. Let F be a coherent sheaf on the Stein manifold H.

Then 0, q 1.

The main aim of this section is to prove Theorems A and B,

granted our assumption that TheoremBis true for locally free sheaves

of 0—modules.

Theorems A and B have many profound applications.

Examples.

1. Let X be an analytic subset of the Stein manifold M. Then X may

be represented as the common zero locus of a set of analytic functions

on H. For this it is enough to show that for each x H \ X, there

exists I A(M) such that I Tx(M) and 1(x) 0. Set I
—

and let

denote the ideal sheaf of the analytic set Xu(x). Then is a

subsheaf of 0 and
I/Is — (1(x), where (1(x) denotes the "skyscrapper"

sheaf whose stalk is zero except at x where it equals (1. Now, by

Cartan's coherence theorem, is coherent and so, by Theorem B,

— 0. Therefore, taking the cohomology sequence of the short

exact sequence 0 1 (1(x) 0 we obtain the exact sequence

1(M) (1 0.

Hence, for any a (1, there exists f e 1(M) c A(M) such that 1(x) — a.

Choosing a 0, our proof is complete. In fact a much sharper result

is true. It can be shown that if H is of dimension m, there exist

A(M) such that X — The reader may find a

proof in Forster and Ramspott Ui] (see also Grauert t2]).

2. Let H be a complex manifold and U (Ui: i I) be an open

cover of H by Stein manifolds. Then, exactly as in the proof of

Example 15, §4, Chapter 2, Ui — n ... nil is Stein for all
k 0

E I. It follows from Theorem B that if F is any coherent

sheaf on H, then any Stein open cover of M is a Leray cover for F.
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Before we start on the main work of this section, we show how

Theorem B for free sheaves enables us to give a complete solution to

the Cousin problems on a Stein manifold.

Theorem 7.2.1. A Stein manifold is a Cousin I and Cousin A

domain.

Proof. Our standing assumption implies that H1(M,O)

0, M Stein. Hence, as in Example 6, §3, Chapter 6, Mis

a Cousin I and Cousin A domain. 0

Theorem 7.2.2. Let d be a divisor on the Stein manifold M.

Then d is a divisor of a merornorphic function on H if and only if

c1([d]) 0. In particular, M is a Cousin I and Cousin B domain if and

only if H2(M, 0.

Proof. Our standing assumption implies that

H1(M,O) — H2(M,O) — 0. Hence the Chern class map c1: H1(M,O*)

is an isomorphism (see Example 11, §3, Chapter 6). The result now

follows from Example 16, §3, Chapter 6.

As an immediate consequence of Theorem 7.2.2 we have

Theorem 7.2.3. Let X be an analytic hypersurface in the Stein

manifold H. Provided that — 0, there exists f A(M) such

that

1. x — Z(f).

2.
'X,x

for all x H.

Remark. If X is an analytic hypersurface in the rn—dimensional

Stein manifold H and 0, then it can be shown that X Is

representable as the common zero locus of not more than 1 +

analytic functions on H. See Forster and Ramspott [1; Satz 3].

We shall give further applications of Theorems A and B in the

remainder of the chapter and also in Chapter 12.

Proposition 7.2.4. Let F be a coherent sheaf on the Stein

manifold H. Suppose that F admits the (projective) resolution



142.

where .,E0 are holomorphic vector bundles on N. Then

1. 0, q � 1.

2. The map ag: - F(M) is onto.

Proof. Set 0 � i n. The exactness of the

resolution of F is equivalent to the exactness of the sequences

Our standing assumption implies that 0, q 1, 0 � jt m.

Consider the cohotnology sequence of the short exact sequence

O K + E K + 0. Since K E , we see easily thatm —in—l m—l m -In

Hcl(M,K1) — 0, q 1. Proceeding inductively, we deduce that

0, q � 1, j 0,... ,m—l. But K0 — F and so we have proved

1. Now take the cohomology sequence of 0 K1 -* F + 0 to

obtain the exact sequence

so

o K1(M) 0(E0) F(M) 0.

This proves 2. 0

Examples.

3. Let X be an analytic hypersurface in the Stein manifold M and

suppose that 0. We claim that — 0, q � 1. Indeed

by Theorem 7.2.3, there exists f t A(M) such that
—

for all

x e N. Therefore has the resolution

°M + °X

Now apply Proposition 7.2.4.

4. Let 10 denote the ideal sheaf of the point (0,0) and

set 0 = 0 ,, 00 = 0/70. Then has the resolution

0 0 .L,0 -* 0,
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where a(f) — (z2f,z1f), b(f1,f2) z1f1 — z2f2.

Hence, by Proposition 7.2.4, — 0, q � 1.

Remarks.

1. Both the examples above are special instances of a general

technique for constructing resolutions of ideal or structure sheaves

based on the Ko8zul ccmpiex. For details we refer the reader to

Griffiths and Harris [1] and Hartshorne [1). See also the exercises

at the end of §5.

2. Unfortunately it is not true that every coherent sheaf on a

Stein manifold admits a resolution by free or even locally free

sheaves (see exercise 9). However, we shall prove that a coherent

sheaf on a Stein manifold M admits a free resolution over any

relatively compact subset of H and this will be a main step in the

proof of Theorems A and B.

The next few paragraphs are devoted to a study of the space of

sections of a holomorphic vector bundle defined over a domain of

holomorphy.

Proposition 7.2.5. Let E be a holomorphic vector bundle

over the domain of holomorphy 0 in Then

1. Given e a x a 0, there exists a a 0(E) such that s(x) e.

2. If w is any relatively compact open aibset of 0, there exists

an exact sequence

0r
E

Proof. Our proof of 1 goes by induction on n. Suppose

n — 1. Let I denote the ideal sheaf of {x}. As in example 3 we

have the free resolution 0 + 0 -'0 of 1, where a is defined as

multiplication by z—x. Tensoring with E, we obtain the exact

sequence

E -' 0,
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where EX
—

and is the subsheaf of sections of E which vanish

at x. Taking the cohoinology sequence and applying our standing

assumption we see that — 0, p � 1. Since EX is a subsheaf

of E, we have the short exact sequence

0 EX E L,E(x) 0

where E(x) is the skyscrapper sheaf with stalk at x and zero

stalk everywhere else and P evaluates sections at x. Taking the

cohomology sequence and using the vanishing of Hl(cLEx), we arrive

at the exact sequence

o -+ + -* 0

and so P is onto, proving 1. Now suppose the result proven for n—i.

Without loss of generality suppose x — 0 a Let H denote the

intersection of the hyperplane z1 0 with r2. Since H is obviously

holomorphically convex, H is a domain of holomorphy (in We

let 0' denote the Oka sheaf of H and remark that 0' 0_101H. We

have the short exact sequence 0 + 0 0 of sheaves

over where a corresponds to multiplication by z1 and r is restrict-

ion of germs to H. Tensoring this sequence with E we obtain the

short exact sequence

0 -*

where is the sheaf of sections of the holotnorphic bundle E

restricted to H. Taking the cohomology sequence we arrive at the

short exact sequence

0 -* 0.

By our inductive assumption, there exists a such that

s(x) — e. Since r Is onto, It follows that there exists s a

such that s(x) e, completing the inductive step and proving 1.

For the proof of 2 we note that for each x a w, there exist,

by 1, °1'"'°q a ouch that is a basis for Ex
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q — dim(E). By the compactness of w, we may therefore find sections

e fl(E) such that for any x e

spans Taking r — pq, we see that the map c — (4,.. 0r
4• E

is onto. 0

The next theorem provides a key step towards the proof of

Theorem B.

Theorem 7.2.6. Let F be a coherent sheaf on the Stein

manifold M. Then there exists a free resolution of F over any

relatively compact open subset c*i of M:

p p

(A) (A)

Our proof of Theorem 7.2.6 will depend on several lemmas.

Essentially, we shall first prove the theorem in case M is a domain

of holomorphy (hard) and then, using a lemma of Rossi, deduce the

general case (easy).

DefInition 7.2.7. An open subset P of the Stein manifold M

is called an analytic polyhedron if there exist A(M)

such that P is a union of connected components of the set

{z H: 1f3(z)I < 1, j — 1,.. .,k}.

Remark. Just as in §4, Chapter 2, it is easily verified that

an analytic polyhedron is holomorphically convex and therefore a

Stein manifold.

Lenina 7.2.8. Let U be an open neighbourhood of the compact

subset K of the Stein manifold H. Suppose that K is A(M)—convex

(that is, — K). Then we may find an analytic polyhedron P c U

which is a neighbourhood of K.

Proof. Without loss of generality we may suppose that U is

relatively compact. For each x 9U, there exists F A(M) such that

IF(xH > 1, IFIK < 1. By the compactness of au, we may therefore

find A(M) such that IF1IK... < 1 and

> 1 for every x Since Q — (z c H: 1,

j — l,...,q) is disjoint from we may take P — QnU. 0



146.

Suppose K is a compact A(M)—convex subset of the Stein

manifold M. We say that K possesses property (R) if given any open

neighbourhood U of K and coherent sheaf F on U, we can find an open

neighbourhood V of K contained in U and exact sequence

+ + 0

(V and p will depend on F).

Lema 7.2.9. Suppose that the compact A(M)—convex subset K

possesses property (R). Then given an open neighbourhood U of K and
coherent sheaf F on U, we can find a Stein open neighbourhood w c U

of K and free resolution of F over w:

p p0 a

Proof. Since K possesses property (R), we may find an open

p0 a0
neighbourhood U0 c U of K and exact sequence F1, 0. Now

0 0

Ker(a0) is a coherent sheaf on U0 and so, since K possesses property
p1 a,

(R), we have an exact sequence 0 —,Ker(a0) + 0 over some open
1

neighbourhood U1 c U0 of K. That is, we have the exact sequence
a1 p0 a0

°u
0. We now proceed inductively, just as in the

1 1

proof of Corollary 7.1.8, to obtain a free resolution

p p
+0

of F over some open neighbourhood Urn c U of K. Finally, by
7.2.8 we may find a Stein neighbourhood W c Urn of K and restricting

(*) to w we obtain the required result. 0

Corollary 7.2.10. Suppose that the compact A(M)—convex compact

subset K possesses property (R) and that F is a coherent sheaf

defined on some open neighbourhood of K. Then

1. For every open neighbourhood V of K, we may find a Stein open

neighbourhood w c V of K such that — 0, q � 1.
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2. If are sections of F over some open neighbourhood

V of K and if generate we may find a (Stein) open

neighbourhood w c V of K and al,...,ak c A(w) such that

k

f — on w.

i—i

Proof. Both 1 and 2 are immediate from Lemma 7.2.1 and

Proposition 7.2.4. 0

We now come to our main lemma.

Lenria 7.2.11 (H. Cartan). Let K be a compact

subset of the domain of holomorphy 0. Suppose that f E A(0) and that

Ka {z e K: Re(f(z)) — a) possesses property (R) for all a e

Then K possesses property (R).

Proof. Our proof is a combination of that due to 11. Cartan

together with a twist due to [1] which makes use of

Theorem B for locally free sheaves.

Let F be a coherent sheaf defined on some neighbourhood of K.

For � a � b � we set K8
b

— {z c K: a � Re(f(z)) S bi.

Certainly Ka
b

is A(c2)—convex since the condition a S Re(f(z)) S b

may be equivalently written as exp(f(z))l � exp(b);

Iexp(—f(z))I s exp(—a).

For sufficiently large negative numbers a, 0 and so

possesses property (R). Let S denote the supremum of numbers

a such that possesses property (R). It is enough to prove

S — since K — K.

Suppose S < Since Kss — K5 possesses property (R),

Proposition 7.2.4 and Corollary 7.2.10 imply that there exists a

Stein open neighbourhood U1 of K5 and f1 e such

that ft,.. generate F as an 0—module over U1. Choose a < S < b 80

that Kab c U1. By definition of S and Proposition 7.2.4,

Corollary 7.2.10, there exists a Stein open neighbourhood U2 of K_c,,,
a

and f2 — such that generate F as an

0—module over U2. By Corollary 7.2.10, 2, we may find an open Stein

neighbourhood U3 of Ksa and q x p matrix with coefficients

holomorphic on U3, such that
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01f1 U3.

Similarly, we may find a p x q matrix with coefficients

holomorphic on some Stein open neighbourhood U4 of such that

Of2 — f1onU4.

Shrinking U1,...,U4 we may suppose that u1 nu2 — U3 — U4 (though, of

course, the neighbourhoods need no longer be Stein). Since

and contained in U1 uU2, there exists a Stein open

neighbourhood U of which is contained in U1 uU2 (Lemaa 7.2.8).
Replacing the neighbourhoods by their intersections with U, we

may assume that U1 uU2 — U and U1 nU2 • U3 — U4.

For j — 1,2, we define honomorphisms -. by

-
, u'

—

—

Our construction guarantees that the sequences

+0
Ui Ui

ate exact, j = 1,2. In the remainder of the proof we show how to

identify the sequences over U12 to obtain a locally free resolution

of F over U.

Let Tq denote the identity pxq, qxq matrices

respectively. We see that

0 f1 02 0

— on U12.

01 'q 0 0
1q

Hence

f I 0 I 0 0
1 p p 2

0
1q

0
1q



149.

Let 8: U12 + denote the holoinorphic matrix function

defined by

0

—81 tq
o

Observe that, over U12, we have — where the prime denotes

transpose. Therefore, — F29'. Hence, if U1 S A(U j —1,2,

F1u — F2u if and only if F2(O'u1) — V2u . in particular, we have

equality if u2 — O'u1. Setting •12 — •21 we see that

are the transition functions for a holomorphic vector

bundle E over U — U1 u U2 and that the condition $21u1 — u2 amounts

to saying that u1, u2 are local representatives of a holomorphic

section u of E (over U). The inorphiams determine a hotnomor—

phism E which is surjective since both and F2 are surjective.

We now apply Proposition 7.2.5, 2, to deduce that K,,b possesses

property (K). Contradiction. Therefore S and K possesses

property (K). 0

Lenna 7.2.12. Every compact subset K of a
n

domain of holoanorphy in a possesses property (R).

Proof. The set (a a K: Re(z1) — a1, Im(z1) — b1, j1,...,n}

possesses property (K) for arbitrary a1 ,b1 a 1K Bince it either is

empty or consists of a single point. By Lemma 7.2.11, the set

obtained by dropping one of the conditions Re(s1)
—

b1

still has property (K). Iteration of this argument 2n time8 gives

the result. 0

The first part of the next lemma will enable us easily to

extend Lemma 7.2.12 to an arbitrary Stein manifold. We shall use the

second part to prove a key approximation theorem needed in the proof

of Theorem B.

Letmia 7.2.13. Let K be a compact A(M)—convex subset of the

Stein manifold H. Then, given an open neighbourhood U of K, we may

find a Stein open neighbourhood V C U of K and holomorphic map

F: H aN such that



1. F maps V biholomorphically onto a closed submanifold P of the

unit Euclidean disc E ((z1,. .. of

2. For p � 1, — 0 denotes the ideal sheaf of P).

Proof. (Roagi [1)). Without loss of generality we may

suppose that U is relatively compact. For each x U, we may find

a A(M) which define local coordinates at x. Hence, by the

compactness of U, we nay find a finite set h1,. . . A(M) which

give local coordinates at every point x a U. In particular, we may

find an open neighbourhood W of the diagonal in U x such that if

x,y a W, x y, there exists an with # For each

x,y a U x U\W, we can find f a A(M) with f(x) # f(y). Therefore

since U x U\W is compact we may find a finite set a A(M)

which separates points in U x U \ W. We see at once that the set

• • separates points of U and gives local coordinates at every

point of U. In particular, the map h — (h1,.. .,hr): H restricts
to an injective holomorphic immersion on some neighbourhood of U.

Multiplying h by a sufficiently small scalar we may in addition

suppose that

< ½.

Juet as in the proof of Lemma 7.2.8, we may find f1,.. A(M)

such that 'tJ'K < 1 � j k and > 1, all z a For

positive integers q, define gq: M + by

k

g (z) — 1fq12
q j

Fix a value of q so large that < ½ and Igq(z)I > z a

For a a H, define

G(z) Eq(z) +

i—i

and let V — a U: G(z) < l}. Our construction guarantees that V is

an open neighbourhood of K with C U. The map F: N -, defined
by F — maps V biholomorphically onto a closed

submanifold P of E. In particular P is Stein, since E is Stein, and

so V is Stein.
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To complete the proof, notice that for c small and positive,

V — {z a IJ: 0(z) < 1+c} will be mapped biholomorphically by F onto

a closed aubmanifold of the Euclidean disc of radius Now

IE and so, since is an A(E€)_convex compact subset of E,

7.2.12 and Corollary 7.2.10 imply that 0, p � 1. 0

Proof of Theorem 7.2.6. Let u be a relatively compact Stein

open subset of M. Then K — is a compact A(M)—convex subset of N.

By Lemma 7.2.13, we may find a Stein open neighbourhood V of K and

holomorphic map F of N into some such that F maps V btholomorphic—

ally onto a closed aubmanifold P of the unit Euclidean disc E in

Since F maps V biholomorphically onto P, is a coherent sheaf of

F*Ov Or—modules on p. Let denote the trivial extension of

to E. is a coherent sheaf of Choose 0 so that

K, where denotes the open Euclidean disc of radius 1—c

in By Lemmas 7.2.9, 7.2.11, we may find a free resolution

p p0 —
o 0 F over E. Restrict the resolution to

C C

n P and apply Exercise 9, §1 to obtain a free

of over P. Pull back by F to obtain a free of F

over K. We have shown that F has a free resolution

over some open neighbourhood of K and, a fortiori, over u. 0

As an immediate corollary of Theorem 7.2.6 we have

Lenina 7.2.14. Every compact A(M)—convex subset K of a Stein

manif old N possesses property (K).

Proposition 7.2.15. Let F be a coherent sheaf on the Stein

manifold N. Then — 0, q � 2.

Proof. Using Lemma 7.2.8 we may choose an open cover

U — i—1,2,...} of N by relatively compact Stein open subsets of

M satisfying

1. U c U , n � 1; 2. U U ?1.
n n+1 n

n'l

By Example 2 and Theorem 7.2.6, LI is a Leray cover of N for F. Hence

q � 0. Suppose A a For n 1, let

— {Uj: ..,n} and An denote the restriction of A to L1n

Since is a Leray cover of for F and s 0, q � 1, we
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have 0, q � 1. Now A0 and so there exists

b0 c such that 0(b0) = Extend b0 to by

setting — 0, 3 > n. We construct inductively a sequence

B0 satisfying

1. B0IUJ B31U3, 3 � n; 2. A0 — D(30)JU0.

Define B1 b1 and suppose B1,...,B0 have been constructed. We have

= 0. So, provided that q—1 1, there exists

C0 such that D(c0) = Extend Cn to

by taking 0, 3 > n. We define B0+j b041

Finally define B by B(U3 B3. Clearly 0(B) A. U

The proof of Proposition 7.2.15 clearly breaks down it q 1

and we have to use an approximation theorem for this case. First we

need to topologise the apace of sections of a coherent sheaf.

Let K be a compact A(M)—convex subset of the Stein manifold M

and F be a coherent sheaf on N. By Proposition 7.2.4 and Theorem

7.2.6 we may find sections si,..
•'8k

F(K) which generate F as a

0—module over K (see also Lemma 6.1.12). Let s s F(K). Define

inf{maxItcjHK. C3 E 0(K)}.

The seminorm may depend on the choice of generators

but another choice of generators gives an equivalent seminorm since
the two sets of generators are related by a matrix with holomorphic

entries analytic on K, Corollary 7.2.10.

Lenina 7.2.16. Let s F(K) and suppose that 0. Then

— 0, for all a a

Proof. Choose generators a F(K) for F over K and
k

suppose s — c3s1 on K. If — 0, we may find for every c > 0,
3=1 k

a 0(K) such that s and lc9K < c, 1 3 � k. We

certainly have —

a a K ....(*)

Fix z a and let be a set of generators
over for R(s1,.. By Theorem 3.6.2 and the Oka Theorem
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(Theorem 7.1.6), there exists an open neighbourhood V c of z such

that the sequence

-#0

is eplit exact ("B" denotes bounded sections). In particular, letting

£ -#0 in (A), we see that (cl,...,ck)ID e Im(P) — R(sl,...,sk)(D).
But therefore — 0, y V. Hence the result. Of course, our

argisnent is just the closure of modules theorem, Exercise 3, §6,

Chapter 3. 0

Let (K0)�i be a normal exhaustion of M by compact A(M)—convex

subsets (see §4, Chapter 2 and note that we require c

n � 1). For each n choose sections in F(Kn) which generate F over

and let I denote the corresponding seminorin. We take the

topology on H (M,F) defined by the seminorms
I

n � 1. It is quite

straightforward to verify that any two normal exhaustions of M will

give rise to the same topology on H0(M,F).

Lema 7.2.17. Suppose that we are given sections f0 c

n � 1, such that for � -#0, n,m + Then there exists

a unique section F F(M) such that IF — -# 0, n -. p � 1.

Proof. Fix p � 1 and let e be sections

defining
I Choose integers n1 � n2 � ... such that

f —f i�l.
ni p+1

Set u — f , u f —f , i � 1. Choose c O(K ) such that
0 ij

u1 CjjSj and maxicijiK
+ �

Since

Ic1 < the series c converges uniformly on K to a
i—i j

p+l i—0 p+l

function which is analytic on 1 � j � k. Since K C

Define — and observe that
j —l

-
—

0 as q
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Now by the triangle—inequality it is clear that IF—fl 0, n

Moreover by Lemma 7.2.16, this condition determines uniquely on

In particular, F 0

F be a coherent sheaf on the Stein

manifold N and give R°(M,F) the topology described above. Then

H0(M,F) is a space. 0

Proof. Lemmas 7.2.16, 7.2.17. 0

Next we prove our main approximation theorem.

Theorem 7.2.19. Let K be an A(M)—convex subset of the Stein

manifold N and suppose that f 0(K). Then there exists a sequence
A(H) such that + 0, n ÷

Proof. We may suppose that f A(U), where U is an open
neighbourhood of K. By Lemma 7.2.13, we may find a Stein open
neighbourhood V c U of K and analytic map F: N + such that P F(V)

is a closed submanifold of the unit Euclidean disc E and

— 0, p � 1. Let g — c A(P). Taking the cohomology

sequence of 0 + -' Owe see that the restriction map

A(E) -' A(P) is onto. Therefore there exists G A(E) such that

GIP — g. Now polynomials are dense in A(E) (Exercise 1, §2, Chapter 2)
N

Therefore, for n � 1 we may find a polynomial on a such that
Ipfl_GIF(K) 1/n. Set n 0

Theorem 7.2.20. Let K be a compact A(M)—convex subset of the

Stein manifold M and F be a coherent sheaf on N. Suppose f £ F(K).
Then there exists a sequence f0 F(M) such that If + 0, n •

Proof. Choose a normal exhaustion (K) of H with K1 — K. Fix

n � 1. For p > 0, we shall construct such that

g1 f and Bp � r � p.

By Lemma 7.2.17 this will imply that there exists F(M) such that
If ÷ 0, j p � 1. Taking p — 1 and noting that

J—l

+ f on K, we therefore have 1/n.
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To construct the sections we proceed inductively and suppose

constructed. Let 51'•••'3k F(K1,÷1) generate F over

Then s — Cj a O(K ). By Theorem 7.2.19, we may find
p p k

a A(M) such that _djIK � Clearly

satisfies our requirements. 0

Theorem 7.2.21. (Theorem B of Cartan). Let F be a coherent

sheaf on the Stein manifold M. Then — 0, q a 1.

Proof. We have already proved that — 0, q a 2

(Proposition 7.2.15). There remains the case q — 1.

Choose a normal exhaustion (K0)�i of N. For each n we may,

by Lemma 7.2.8, find a relatively compact Stein open neighbourhood

c of K0. Certainly c n � 1. As in the proof of

Proposition 7.2.15, U = (U0) in a Leray cover of M for F. Set

{u1: i — l,...,n), n a 1. Given A a Z'(tI,F), let A denote the

restriction of A to U. Since H1(U0,F) — 0, there exists

b0 a C0(U,F) such that D(b0) n � 1. We construct inductively

a sequence a C0(U0,F) such that

1. D(B0) — A.

2. lB —B I � 1 � r � n.
n n+lr

(For 2 note that 1 implies B0—B41 a F(U)). Take B1 — b1 and suppose
B1,...,B0 have been constructed. Condition 1 implies bfl+l_Bn c F(U0)
and so by Theorem 7.2.20 there exists n a F(M) such that
lB0 _bn+i_rlIn � Now take B+i b+1+fl. Next we shall
construct F — + F+i � 1.
Given p a 1, let a define the seminorm Ii,. We may

choose Cjj such that for i � cjjsj and

maxjIci4IK � 2 . Just as in the proof of Lemma 7.2.17 these
p

conditions imply that for 1 � j � k, c14 converges uniformly on K
i—p k

to a function which is analytic on Set F —

j—l
For every A(M)—convex compact subset K of we have



156.

— — 0.

It follows from Lesuna 7.2.16 that B + F B + F on . Hence
p p p4.1 p4.1 p

we may define B C (U,F) by + p � 1. Now as

— and restricts to a section of F over — that
is a cocycle — we see that D(B)IUn — n � 1. Hence D(B) — A. 0

Theorem 7.2.22 (Theorem A of Cartan). Let F be a coherent

sheaf on the Stein manifold M. For each x M, there exists

t F(M) such that x'"'5p,x generate as an 0—module.

Proof. Let I denote the ideal sheaf of {x}. Then IF is a

coherent subsheaf of F, Theorem 7.1.9, 1. Therefore by Theorem B,

H1(M,IF) = 0 and so taking the cohomology sequence of

o IF F FIIF + 0 we obtain the exact sequence

F(M) (F/IF)(M) 0

For y ,c, (IF) F and so (F/IF 0. Hence (F/TF)(M)

where m denotes the maximal ideal of 0 at x. Let N denote the

of generated by a e F(H)}. Since (*) is exact

we have N + It now follows by Nakayama's Lemma that

0

We may now give a global version of Corollary 7.2.10.

Theorem 7.2.23. Let F be a coherent sheaf on the Stein mani-

fold N. Suppose that sp.
.

F(M) generate for every x M.

Then given S c F(M), there exist A(M) such that

S

—

Proof. The sheaf map a — 0 is onto.

Since Ker(s) is coherent, Theorem 7.1.2, H1(M,Ker(a)) — 0 by Theorem B.

Hence taking the cohomology sequence of 0 Ker(s) 0 we

obtain the exact sequence F(M)-' 0. 0

Remarks. Our proof of Theorem B is close to that of
U] in that it makes use of Theorem B for locally free

sheaves of 0—nodules. The main difference Is that we make use of a
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device of Rossi ci] to give an elementary proof of the approximation

theorem, Theorem 7.2.19. Cartan's original proof starts by estab-

lishing Theorems A and B for cubes in and then extends the result

to Stein manifolds. For expositions of this approach to Theorems A

and B see H. Cartan [1], Grauert and Remmert [1] and Cunning and

Rossi El]. Rossi [1] gives a proof of Theorems A and B by starting

from the relatively elementary result of Oka to the effect that

— 0, q � 1, for all polynomially convex domains D in

Using this result he constructs arbitrarily fine Leray covers for

coherent sheaves and then proves Grauert's finiteness theorem for

strictly pseudoconvex domains (see §4). Roast then shows that the

cohomology of a coherent sheaf on a strictly pseudocoavex domain is

supported on the compact analytic subsets of the domain (see also

Rossi E2], R. Narasinhan [3]). Since Stein manifolds have no non-

trivial compact analytic subsets this is sufficient to deduce the

vanishing theroem for relatively compact strictly pseudoconvex

domains in a Stein manifold. The rest of his proof is similar to what

we have presented here.

One point about our proof should be noticed: We really only

assume Theorem B for locally free sheaves defined over contractible

domains in In fact by a theorem of Grauert, such locally free

sheaves are free. Of course if we knew this, we could apply an

appropriate version of the (elementary) Dolbeault—Crothendieck lemma

to prove Theorems A and B. However, a direct proof that locally free

sheaves over contractible domains in are free is not easy. It is

a main step in the original proof of H. Cartan (and then only for a

restricted class of contractible domains in A proof of the

triviality of locally free sheaves over contractible domains in

which uses Theorem B for locally free sheaves may be found in Adams

and Criffiths [1].

One merit of the partial differential equation techniques used

in establishing the exactness of the 5—seqeunce on a Stein manifold

is that they give good estimates on the growth of solutions to — g.

The resulting "cohomology theory with bounds" has important applicat-

ions to the theory of partial differential equations and is described

in [IL
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Exercises.

1. Show that Theorem 7.2.20 is false if K is not A(H)—convex.

2. Prove that if H is a complex manifold such that H1(M, 1) 0

for all coherent sheaves of ideals I of 0H then H is Stein (Hint: For

the holomorphic convexivity of M show that given any discrete subset

(xj: i 1) of H there exists f A(M) such that — 1, i � 1.

See also Seminar number 20 by J. Serre in H. Cartan [21).

3. Show that if M is an rn—dimensional Stein manifold then

Ht(M,e) — 0, r in (Use Example 23, §1, Chapter 6).

4. Let M be a Stein manifold and suppose 0. Show that

any non—zero meroinorphic function on H may be written in the form f/g,

f,g e A(M) and — 1, x H.

5. Let H be a Stein manifold and suppose in is a meromorphic

function on H. Show that there exist f,g A(M) such that in f/g

(Hint: for z H, let denote the ideal of 07 consisting of all germs

such that F. Prove that the sheaf F is coherent and find a

non—trivial section of F). In Chapter 12 we give examples to show

that we cannot generally require 1, z H.

6. Let H be a Stein manifold with 82(M,7L) 0 and suppose that H

is an analytic hypersurface in H. Prove that M\H is Stein.

7. Suppose that {xj} is a discrete subset of the Stein manifold H

and that for each i we are given a Laurent series

P

Li — 0 � P(i), N(i) <
m—N( 1)

Show that there exists a merornorphic function in on H such that for

all i, (m—L1) is holomorphic on some neighbourhood of xj and has a

zero of order P(i) +1 at zi (see Exercise, §3, Chapter 1).

8. Let H be an analytic hypersurface in the Stein manifold H.

Show that has a resolution by locally free sheaves of the form

0 ' 08 -, 0
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9. Show that a coherent sheaf on n > 1, need not have a

resolution by (locally) free sheaves of 0 (Hint: Given

z £ and p � 1, consider resolutions coherent sheaf

§3. The finiteness theorem of Cartan and Serre.

The aim of this section is to prove that dim q � 0,

for all coherent sheaves F on a compact complex manifold M. We start

by reviewing some definitions and results about spaces. A

general reference for spaces is Rudin [1]. See also Appendix

B in Gunning and Rossi [1]

Lenina 7.3.1. Finite direct sums and countable products of

spaces are Fr&het. If G is a of the

space E then G and EIG are

Proof. We shall prove that E/G is if G is a closed

subspace of E and leave the remaining assertions as elementary

exercises for the reader. Suppose that the topology on E is defined by

the seminorms
I

p � 1. Let q: E -, E/G denote the quotient map.

For p � 1, define

Iq(u)I' influ—gI , ut E.
gEG

Then I are seminorms on E/G defining the quotient topology on E/G.

Since C is a closed subspace of E, E/G is Hausdorff and it is

straightforward to verify that the seminorms define the structure

of a space on E/G. 0

Theorem 7.3.2. (Open mapping theorem). Let A: E -. F be a
continuous suriective linear map between spaces. Then A is

open. In particular, if A is a continuous linear bijection, A is a

homeomorphism.

Proof. Rudin [1; Corollary 2.121, Cunning and Rossi

Cl; Appendix B]. 0

Theorem 7.3.3. A locally compact space is finite

dimensional.
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Proof. Rudin [1; Theorem 1.22], Gunning and Rossi

Cl; Appendix B]. o

Definition 7.3.4. Let A: E F be a continuous linear map

between spaces. We say A is compact if there exists an open

neighbourhood V of 0 in E such that A(V) is relatively compact.

Theorem 7.3.5. (L. Schwartz). Let A,B: E F be continuous

linear maps between spaces and suppose that A is surjective

and B is compact. Then Im(A+B) is a closed subspace of F and

F/Im(A+B) is finite dimensional.

Proof. Gunning and Rossi [1; Appendix B). 0

Suppose that U is an open subset of the complex manifold M.

We may give 0(U) the structure of a space by taking as

seminorms

If — f 0(U),

where Is any increasing family of compact subsets of U

satisfying U and c
,+l'

p � 1. Indeed, the topology

defined by the seminorms is just the topology of uniform convergence

on compact subsets of U. In particular, It is independent of the

choice of sequence and corresponding seminorms. It follows

immediately from Lemma 7.3.1, that has the structure of a

space, p � 1.

Now suppose K is a coherent subeheaf of Just as In the

proof of Lemma 7.2.16, the closure of modules theorem implies that

K(U) is a closed subspace of Hence, by Lemma 7.3.1, K(U) is

Fr&het.

We shall say that an open relatively compact subset U of M is

C-adnissible if U is a Stein open subset of N and there exists another

Stein open subset V of M such that U C V.

Suppose that U is C—admissible and F is a coherent sheaf on M.

By Theorem 7.2.6 and Proposition 7.2.4 there exist F(U)

which generateF(U) as an 0(U)—module. Taking the cohomology sequence
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of the exact sequence 0 .' -' + ÷ 0 and applying

Theorem B, we arrive at the exact sequence

0 R(8l,...,sk)(U)
O(U)k + F(U) + a.

As noted above, R(sl,...,sk) is a closed subspace of O(U)k and so, by

Lemma 7.3.1, F(U) has the structure of a space.

We have already defined a topology on F(U), Theorem

7.2.18. Noting the definition of the seminorms on the quotient

F(U) — dc(U)/R(si,.
. it is clear that these two topologies

coincide. In particular, the topology we have defined on F(U) is

independent of the choice of generators si,.. (see the di8cussion

in U).

From now on, assume that F(U) is topologised as a Frkhet

space for all C—admissible subset8 U of M.

Lenria 7.3.6. Let U, V be C—admissible subsets of H with

V c U. Then the restriction map F(U) -' F(V) is continuous.

Proof. Certainly, the restriction maps are continuous if

F
— Hence they are continuous if F is a coherent subsheaf of

and so, taking quotients, the result follows in general. 0

Suppose now that U is an arbitrary open subset of M. Since M

has a basis of open sets consisting of C—admissible sets (for example,

biholomorphic images of polydiscs), we may write

U — U U3,

i—i

where the U3 are C—admissible open subsets of H. By Lemma 7.3.1,

1T F(U4) has the structure of a Frêchet space. Let Z c be
3—1 3—1
the subset defined by Z — on Ujk, j,k � 1) and

K: 1T F(U4) .+ F(U be the linear map defined by
3—1 l�j<k<°'

K((f3)) — ((fj _fk)IUjk). By Lemma 7.3.6, K is continuous and there-

fore Z — K1(O) is a closed subspace of 1T F(U4). Hence by Lemma
3—1

7.3.1, Z Now define x: F(U) + TT F(U4) by — (flu4).
3—1
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We see that x F(U) bijectively onto Z and so F(U) inherits the

space structure of Z. Moreover, the space structure

we have defined on F(U) is independent of the decomposition of U as a

1
countable union of C—admissible sets. For suppose U U U1 U U

1—1

are two such decompositions of U. Then U U n U2 is also a
i,j j

decomposition of U 88 C—admissible sets. Denote the corresponding

closed subspaces of by Z1, Z2, Z12

respectively. We have the commutative diagram

F(U) 1TF(U1aU2)

F

where r1 and r2 are induced by restriction and are therefore contin-
uous by Lemma 7.3.6. Now r1 and r2 restrict to continuous bijections

of Z1 and Z2 on Z12. Therefore by the open mapping theorem
(Theorem 7.3.2), Z1 is homeomorphic to Z12 which in turn is homeo—

morphic to Z2.

From now on assume that F(U) is topologised as a

space according to the recipe above for all open subsets U of M.

Suppose that G is another coherent sheaf on M and •: F -, G is

a homomorphism. We claim that for all open subsets U of M the induced

F(iJ) G(U) is continuous. By our definition of the

topologies on F(U), G(U) it is clearly enough to verify that

U is C—admissible. If U is C—admissible, there

exist exact sequences -' 0, + 0. Take

the standard bases of (see

For 1 � j � p, there exist tjj 6 0(U) such that

— i=l

Defining by the matrix we obtain the

commutative diagram
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>F(u) '0

I Isv
'0(U) '0

Now is obviously continuous and so, since the quotient maps a and
t are continuous, it follows from the Open Mapping theorem that is

continuous.

Definition 7.3.7. A sheaf F of 0—modules on a complex manifold

N is said to be a Fre'chet eheaf if

a) For each open subset U of M, F(U) is a space.

b) The restriction maps F(U) -, F(V), V c U, are all continuous.

Theorem 7.3.8. Let H be a complex manifold. Then there is a

unique way of giving every coherent sheaf defined over an open subset

of M the structure of a Frgchet sheaf satisfying:

a) If U is an open subset of N and F is a coherent subsheaf of

then F(U) has the topology of uniform convergence on compact

subsets.

b) If 5: F + 0 is a homomorphism of coherent sheaves, defined over

some open subset V of N, then the induced maps F(U) 0(U) are
continuous for every open subset U c V.

Proof. The existence part of the theorem follows from the

discussion preceding Definition 7.3.7. For the uniqueness it is eas-

ily seen that it is enough to verify that conditions a) and b)

determine the space structure on F(U) for U C—admissible. If

U is C—admissible we have an exact sequence

5. t
0 R(U) —1LF(U) o

Condition b) implies that are continuous. Condition a)

determines the topology on R(U), and hence, by the open mapping

theorem, the topology on F(U). U
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Remark. Our discussion of the sheaf structure on

coherent sheaves is based on Cunning and Roasi [1]. For much more

extensive treatments of the topologisation of spaces of sections of

coherent sheaves over complex manifolds and analytic sets see Gunning

and Roasi [1] and Grauert and Remmert [1]. In the latter text a very

nice characterisation of the sheaf structure on coherent

sheaves is given based on the Fréchet space structure on the stalks

(see Exercise 4, §6, Chapter 3).

Lenisa 7.3.9. Let U and V be open subsets of H and suppose

c U, compact. Then 09(U) is compact.

Proof. Montel's theorem. 0

Lema 7.3.10. Let F be a coherent sheaf on H and suppose

that U, V are open subsets of M with V c U, V compact. Then

F(U) F(V) is compact.

Proof. First suppose U is C—admissible. We have a commutative

diagram of continuous maps

09(U) F(U) >0

tVU

O"(V) F(v) >0

Since 01'(U) is compact, Lemma 7.3.9, it follows that

rVU: F(U) + F(V) is compact.

For the general case, choose covers {U3: 3 —

(V3: 3 1,...,n) of V by C—admissible sets such that c is
compact and U3 C U, 3 1,.. .,n. Then : F(U3) F(V3) is compact

and so therefore is

n n n
: 1YF(U ) -'lT'F(v )

i—i 3 3 3—1 3—1

Set Li U3. The map F(V) factors through 'if r and
3—1 V33

so is compact. Hence • is compact. 0
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Theorem 7.3.11. Let F be a coherent sheaf on the compact

complex manifold H. Then ditrQl°(M,F) <

Proof. Take U — V — M in Lemma 7.3.10 and apply Theorem 7.3.3.

0

Theorem 7.3.12. (Cartan-Serre). Let F be a coherent sheaf

on the compact complex manifold H. Then < q 0.

Proof. Choose Leray covers U — {u1,...,u0}, U' —

of H for F such that c j — l,...,n. For p � 0, let

where the (finite) direct sum is taken over all distinct (p+l)—tuples

— (so'" of integers satisfying 1 � 80'•••'5p � n. By

Lemma 7.3.1, has the structure of a space. Now

clearly defines a closed subspace of (remember that is the

space of alternating cochaing). Hence, has the structure of a

space. Similarly, has the structure of a

space. Let R: denote the restriction homoucrphism.

By our assumptions on the covers U, U' and Lemma 7.3.10, R is compact.

Since the covers U, U' are Leray for F, the natural map

is surjective and so

9

is surjective. But now take A OaR, B — —OaR In Schwartz' finite-

ness theorem (Theorem 7.3.5) and we see that

&'(M,F) —

is finite dimensional. 0
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Remarks.

1. We shall give an important application of the finiteness theorem

in §5.

2. For generalisations of the finiteness theorem to coherent

sheaves over compact analyitc spaces see Gunning and Rossi (1) and

Grauert and Reimnert [1) (the original theorem of Cartan and Serre was

proved for compact analytic spaces).

Exercises.

1. Show that the finiteness theorem of Cartan—Serre is an

itmnediate consequence of Grauert's direct image theorem (look at

constant maps).

2*. (Cunning [2], Crauert and Remmert [11). Let (U,4)) be a chart

on the compact complex manifold H such that $ maps U biholomorphically

onto a polydisc in (in — dim(M)). Set Oh(U) — L2(U) and note that

has the structure of a Hubert apace Chapter 2; Oh(U) will

depend on the chart map 4)). Given a coherent sheaf F on H, show how

to define the space of square integrable cochaina on U, where

U will be a cover of H by open polydi8cs, and prove that has

the atructure of a filbert space. Let denote the correspond-
ing cohomology group defined using square integrable cochains and
prove that p 0. Finally deduce the finiteness

theorem of Cartan—Serre by using the elementary finiteness theorem

of Schwartz for spaces (we shall prove this finiteness

theorem in the appendix to Chapter 10).

§4. The finiteness theorem of Grauert.

Suppose that M is a strictly Levi pseudoconvex (s.L.p) domain

in and that F ia a coherent sheaf on H. In this section we shall

prove the theorem of Grauert that the cohomology groups are

finite dimensional EL—vector spaces, p � 1. As in the proof of the

finiteness theorem of Cartan—Serre, we shall make use of Schwartz'

finiteness theorem. We use Grauert's finiteness theorem in §6 to give



167.

a proof of Kodaira's embedding theorem and again in Chapter 12 to

construct real analytic embeddings.

Let J denote the standard Euclidean norm on and E(r)

denote the open Euclidean disc centre 0, radius r in 1n. Given an

open subset U of we let denote the space of C2 IR—valued

functions on U which, together with derivatives up to order 2, are

bounded on U. Define a norm on by

• sup(14(x)I + 4
XE U

denotes the polynomial norm of the bilinear map That

is, 1D241 — SUp 1D24(v2)I — see [1] or Field

2
Recall from §10 of Chapter 5 that the Levi form L(4) of a C JR—valued

map is the Hermitian quadratic form given in local coordinates

r
by the matrix I —Zj

Lemma 7.4.1. Let 4 be a C2 JR—valued function defined on some

neighbourhood of 0 in Suppose that for all x
•_l(Q),

we have

d4(x) 0 and L(4)(x) positive definite. Then there exists r > 0 and

an open neighbourhood N of $ in such that

1. For all 4 e N and x e 41(Q), d4(x) 0 and L(4)(x) is positive

definite.

2. For all 4 s N, E(s) n (a: 4(z) < 0) is Stein, 0 < a � r.

Proof. Choose R > 0 so that 4 is defined on an open neighbour-

hood of E(R). Certainly 4IE(R) and moreover there exist

> 0 such that for all z 44(Q) n E(R) we have

Id$(z)I > C($) . . .

L($)(z)(v) > M(4)Ivfl2, v

From now on assume that 4 is defined on E(R) and that (*) holds. By

scalar valued Taylor's theorem, we have for y 41(o) and z E(R)
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•(z) — (y)(Zi_yi)
+

+ L(4')(y)(z—y) +

where R4,(z,y) — 1/2 and 0 < 0 < 1. Since

• is C2, there exists r > 0 such that � M(4,)/2 for all

y e E(r). Consequently for y •_l(O) n E(r), z E(r) we have

IR4'(z,y)I lz—y12.

Hence

(I).... L(4')(y)(z—y) + R4'(z,y) > y
4,1(e)

nE(r),

Estimates (*), (#) are open conditions in and so there

exists an open neighbourhood N of 4, in such that (*), (#)
hold for all 4' N. We claim that our choice of r, N implies the

remaining statement of the Lemma. Let 4' N. We must prove that

D5(iji) — E(s) ii {z: < o} is SteIn, 0 < a � r. For this it Is

enough to prove that i& holomorphically convex. Suppose that

n � 1) is a discrete subset of D5(4') converging to the point

y If y i(s), there certainly exists f A(E(s)) which is

unbounded on So suppose 4'(y) — 0 and let

(y)
+

(Zj_Yj).

The quadratic polynomial

F(z) — 0 and 4'(z) < 0 we would have from the Taylor expansion of 4' at
y that L(4')(y)(z—y) + < 0, violating (#). Observing that

— 0, we see that F;1 and is unbounded on any sequence
of points of converging to y. Hence is holomorphically

convex,0<s�r. Q

Theorem 7.4.2. (Grauert [3]). Let M be an s.L.p. domain In N.

Then for any coherent sheaf F on H we have < p � 1.

Proof. Let 4' (H) define H. That is, we suppose
H {z H: 4'(z) < 0), d4' 0 on and L(4') is positive definite on
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3M (see §10, Chapter 5). Since 3M is compact, we may find a finite

open cover {U1: i — 1,. ..,n) of 3M, biholomorphic maps y1: -*

and open neighbourhoods N1 of such that the

conclusions of Lemma 7.4.1 hold for 4ry1, r1 and N1, I • l,...,n. In

particular, the open sets U1 (respectively n M) will be Stein open

subsets of M (respectively M). Choose 0 < Si < r1 so that

{v1 — y1(E(s1)): i — l,...,n) Is an open cover of 3M. By the

openness assertions of Lemma 7.4.1, we may clearly inductively choose

positive functions a 1 � I n, such that

1.

—

)_l
r,j 1,.. .,n.

2. is strictly positive on n 3M.

Set — $, —

—

n1, 1 � j � n. Observe that, 0 on

•_l(O) and is positive definite on ,_l(o) 0 � j n. Set

— H, — (z: < 0). We see that

n

M - M0cM c...cM CU U.
n il

Moreover, M is relatively compact in since is strictly negative

on 3M.

Step 1. The natural restriction map &'(Mj+i,F) + is

surjective, p � 1.

Fix j, 0 � j n. For 1 � I � n, define

• U1 n

— U1 n I # j + 1

— n i — j + 1.

Observe that — unless I — j +1 and that, by Lemma 7.4.1, W1,

are Stein open subsets of Adjoin Stein open subsets

W' W W'

of respectively.
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The covers (U, (U' are Leray covers of Mj+i for F. Observe that

any p—fold intersection of distinct elements of (U is equal to a

p—fold intersection of elements of (U' provided only that p > 1. Hence

p � 1.

Therefore the natural restriction map is
surjective. Step 1 now follows by Leray's theorem.

Step 2. For 1 � j � n, set n N, n N0 and

observe that is a relatively compact subset of Choose Stein

open subsets of H so that is a relatively

compact subset of n+l S j S p, and (U —

(U' are open covers of H, M0 respectively. Just as in

the proof of the finiteness theorem of Cartan—Serre the restriction
map

R: -,

is a compact operator between spaces. From Step 1, the

restriction map -' is aurjective, p � 1, and so, for

p � 1, the map

u
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is a surjective map between spaces. Taking A D

B — —O.R in Schwartz' finiteness theorem we deduce the finiteness of

p � 1. fl

Theorem 7.4.3. (Grauert [3]). An s.L.p. domain is

holomorphically convex.

Proof. Let M be an s.L.p. domain in H. It is enough to show

that given p E there exists f A(M) which is unbounded on any

sequence of points of H converging to p. The method described in

Exercise 2, §2 will not work here as the ideal sheaf of an infinite

discrete subset of M does not extend to a coherent sheaf on Our

proof follows that in IL Narasinihan [3]. As in the proof of
2

Theorem 7.4.2 we suppose H Is defined by the C function By

Lemma 7.4.1, we may choose an open neighbourhood U of p in N,

biholomorphic map y: U E(r) and neighbourhood N of tn

such that for all N, (z: < O} is Stein. Choose

c such that n is positive, > 0 and (4—n)y1 N. Let

{z 4(z) .-fl(z) < 0). Certainly H. As in the proof of

Lemma 7.4.1, there exists F r A(U) such that F(p) 0 and F is non-

zero in Take the open cover U of

Since the natural nap is injective (Exercise 4,

§3, Chapter 6), and is s.L.p., we have < Let L

denote the Infinite dimensional linear subspace of Z1(U,Og) defined

by

L
{

cj and all but finitely many cj's are zero}.

j—1

Since a there exist elements of L which are boundaries.

Therefore we may find a combination

C

g 's vanishing, such that G 0(H), for some

Re C Hence there exist (0)) with

C = H1 — H0 on (UnR) That is, we have

H1
— 11o + on \F1(O).

i—I
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Clearly f EA(M) is unbounded on every sequence of points of M

converging to p. El

We may now give a solution to Levi's problem.

Theorem 7.4.4. An s.L.p. domain of a Stein manifold is Stein.

Proof. Immediate from Theorem 7.4.3. 0

Remarks.

1. Suppose that f2 is a Levi pseudoconvex domain in which is not

s.L.p. Then it can easily be proved that is the union of an

increasing family of s.L.p. domains (see Oka [1] or Gunning and Rossi

[1; Lemma 2, Section D, Chapter 10]). Hence, by Theorem 7.4.4.,

is the limit of an increasing family of domains of holomorphy and so,

by a theorem of Behnke and Stein [1], a domain of holomorphy (see also

Gunning and Rossi [1; section D, Chapter 10]). This result was first

obtained by Oka in case n = 2 and then for general n independently by

Oka [1], Bremermann [1] and Norguet [1]. Their result generalises to

the case when is a Levi pseudoconvex domain of a Riemann domain

spread over (see Gunning and Rossi [1; section D, Chapter 10]).

Moreover, it is not necessary to assume that the boundary of Q is

smooth. All that is required is that the function is

plurisubharmonic in (see the above references and also

LU). It is not generally true that a Levi pseudoconvex domain of an

arbitrary complex manifold is holomorphically convex. For an example

of a non—holomorphically convex Levi pseudoconvex domain see Grauert

[4] and also the survey article by Siu [13, especially §7.

2. R. Narasimhan [4] has shown that if M is a complex manifold

then dim < p � 1, for all coherent sheaves F on M if and

only if M is holomorphically convex. The proof that finiteness of

cohomology implies holomorphic convexivity is similar to that

indicated in Exercise 2, §2 and makes use of the observation that the

space of bounded infinite sequences of complex numbers is of infinite

codimension in the space of all infinite complex sequences. The

converse is much deeper and uses Grauert's direct image theorem

together with results of H. Cartan [33 and Remmert [1] to the effect

that if M is holomorphically convex then M possesses a maximal non—
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trivial compact analytic subset, A. Narasimhan proves that the

inclusion H induces isomorphisins H"(A,FA) p� 1. The

finiteness theorem of Cartan—Serre for compact analytic spaces then

gives the result. In particular, N will be Stein if and only if H has

no non—trivial compact analytic subsets. See Rossi [2] for a

discussion of the case of s.L.p. domains.

3. Suppose H is a strictly pseudoconvex manifold. That is, there

exists a C°' function H + iF. such that is everywhere positive

definite and Ma {z a N: $(z) < a) is relatively compact for all

a c )R . By Sard's theorem, Ma is s.L.p. for a dense Set E c IR of

values of a. Now it can be shown (see Gunning and Rossi [1; Section

C, Chapter 101) that plurisubharmonic functions satisfy a maximal

principle and so H cannot have any non—trivial compact analytic

subsets. It follows from Remark 2 that M5 is Stein, a a E. Thus we

have expressed M as a union of an increasing family of Stein manifolds

parametrized by points in a dense subset of IF.. It is shown in

Docquier and Grauert (1] that this is enough to prove H Stein. See

also Siu El] and note that it is not generally true that an increasing

union of Stein open sets, parametrized by the positive integers, need

be Stein. Of course the union will be Stein if all the sets are

domains in or a Riemann domain (see Remark 1). If they are all

subdomains of a Stein manifold it is not yet known whether their

union must be Stein (see also Markoe [1]). We shall prove in Chapter 11

that every strictly pseudoconvex manifold is Stein. Our proof will

depend on the existence theory for the a—operator and followa the

approach of Kohn [1), Andreotti—Vesentini El],

H an s.L.p. domain in the complex manifold H

and suppose that M has C2 defining function $. Show

a) There exists C > 0 such that Mc Cxc M: •(x) < —c} is s.L.p.
for 0 � c c C.

b)* If H has no non—trivial compact analytic subvarieties then

is Stein, 0 < c < C (See Rossi [1] and note that we do not need to

assume a maximal principle for strictly psh functions).
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§5. Coherent sheaves on projective space.

In this section we shall prove theorems A and B of Serre for

coherent sheaves on projective space. These fundamental theorems

play a similar role in the theory of projective varieties to that of

Cartan's theorems A and B in Stein manifold theory.

Throughout this section U will denote the standard open

cover of by the open sets — z1 0), 0 � i � n.

Suppose that F is a coherent sheaf on Pn(e). Since each is

biholomorphic to ce" and is therefore Stein, U is a Leray cover of

p°(g) for F. It follows immediately from Leray's theorem that

0, p > n.

Let H denote the hyperplane section bundle of Relative

to the cover U, H has transition functions For m e

we let denote the holomorphic line bundle with transition functions

on We may regard Rn as the line bundle associated to

the divisor — 0. That is, if we let c denote the

hyperplane z0 — 0, we have HTh — With this convention,

has the "canonical" section 8m given locally by
m m m n—i

Si and div(s ) — m.P

As is conventional, we let 0(m) denote the sheaf of germs of

holomorphic sections of Hm, m c

Lesina 7.5.1. Let E be a hyperplane in For in 72, we

have a non—zero 0—morphism

$E: O(m) 0(m+l)

satisfying — 0 if and only if z E. In particular, restricts

to an isomorphism of 0(m) with O(m+l) over \E

Proof. Let E have equation s(z0,...,z0) — 0. Define

—
f 0

Remark. The morphism is given locally by — fjs/zi,
f1 O(m)(Ui).
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Let denote the space of homogeneous polynomials of

degree mon Then (Proposition 5.9.2),

0

0, m < 0.

Theorem 7.5.2.

1. For in � 0, we have

HP(Pn(a),o(m)) 0, p 0

p

2. For m < 0, we have

0, p o

(—rn—n—i) n+i—P ),pn.

Proof. Since we have already covered the cases p = 0, p > a,

we shall assume from now on that 1 � p � n. Let us start by consider-

ing the case m 0. Suppose c e Then

c (c(s) — where c(s): U8 * is holoniorphic and

a (s0,.. is a (p4l)—tuple of (distinct) integers lying between

0 and n. We may regard each c(s) as a holoniorphic function on
n+l

U5 C a which is homogeneous of degree zero. By Theorem 2.1.10, we

may take Laurent expansions of the c(s). Thus

= c(s)r . . .r
r0+. . 0 a

c(s) using multi—index notation.
r

Iri—0

Observe that the coefficient c(s) will be zero if any r4 < 0
r00.

with j I Define

a(s01.
—

c(j,90,...,s1)+,
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where E' denotes the sum over all j and

c(j,s0,. . .,sl)+ is the holomorphic function on U5 n... nU9 with

Laurent series p

Ir 'O

rj?O

That is, we omit terms from the Laurent expansion of c(j,a0,.. .,s
1

having rj < 0. Our construction defines an element a C (U,O).

Now

(Da)
—

— ... ± c(j,s0,...

c(s0,. . . , since Dc 0

We have shown that and so 0, p > 0.

Exactly the same proof shows that if m > 0 then — 0,

p > 0. Indeed, the only difference is that a cochain will now be a

collection of holomorphic functions which are homogeneous of degree in.

The same proof also works for in < 0 provided that p < n. We conclude

by considering the case p — n, in < 0. Suppose c Z°(U,O(m)). Then

C: VOl..
.n

Is holomorphic and homogeneous of degree m. Thus

c(z0 Zn)
I r I

-m
r0 r

Write c — C + C , where C is the sum over all terms c z •

n
U U r0...r0O n

where at least one index is positive and C1 is the sum over terms

such that every index rj is negative. Notice that C1 0 if —m � n.

As above it is easily seen that C0 — Da for some (n—l)—cochain a. A

simple Laurent series argument shows that a non—zero C1 can never be a

coboundary. So suppose in —n — 1 and set
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B
= {

C every index r1 <

Jrkm

what we have shown above B Given c B, we may write

r+1 r+l
-.1 v 0 n

c — (z0. . L CZ0 •

r0,.. .,rn�O

r0+. . .

It follows that Hn(U,O(m)) where the Isornorphica is

(—tn—n—i)given explicitly by mapping P P to

—l —1 —l
— (z0...z) P(z0 ) . 0

Remark. For an alternative proof of Theorem 7.5.2, using

non—trivial facts from the Hodge theory of manifolds, see

Seminar 18 by Serre in H. Cartan [2].

Given a coherent sheaf F on we let

F(tn) — Fe00(m), m e

We call FOn) the sheaf F "twisted by O(m)". One feature of twisting

is that we expect to be an increasing function of

m. To explain why this should be so, let us consider the case when F

is the sheaf of sections of a holomorphic vector bundle E. We claim

that {s E div(a) + � o). certainly
it follows from this isomorphism that is an

increasing function of m. Suppose that E has transition functions

relative to a cover UI of P°(0) where we suppose that UI is a

refinement of U. Let a M*(E) and div(s) + � 0. If

e is the local representative of a on Wa c we have

(zO/zi(a))msa

Clearly if Wb C we have

on
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Therefore {(zO/zj(a))msa} defines a holomorphic section of E(m).

Reversing the argument shows that every holomorphic section of E(m)

gives rise to a meromorphic section of E such that

div(s) + � 0. Of course, our argument depended on being

able to show that E admits at least one non—trivial meromorphic

section.

Remark. We should point Out that a holomorphic vector bundle

E on
pfl(g)

always restricts to a holomorphically trivial bundle over

0 � i � n, Serre 12]. This fact also follows from a general and

difficult theorem of Grauert to the effect that a holomorphic vector

bundle on a Stein manifold is holomorphically trivial if and only if

it is topologically trivial. See also Adams and Griffiths Cl] for a

proof that holomorphic vector bundles over polydiscs in are holo—

morphically trivial as well as references and discussion concerning

Grauert 'a theorems.

Theorem 7.5.3. (Theorems A and B of Serre). Let F be a

coherent sheaf on
pTh(g)•

Then there exists m0 — m0(F) e ?Z such that

A. For each z generates as a

Ge—module, m � in0.

B. For in � in0, 0, p � 1.

Proof. (Seminar 19 by Serre, H. Cartan [2]). We start by

looking at some special cases. Suppose F 0(q). Take m0 —q.

Since O(q)(m) — O(q+in), we see immediately from Theorem 7.5.2 that
— 0, p � 1, a' � m0. Clearly for all z

generates in � in0. Since cohomology commutes
k

with direct sums, A and B hold whenever F O(ai) and we may take
i—l

— —min(aj}.

We prove the theorem in general by an induction on n. Let

A B for dimension n. We shall show that
A and B imply A and A implies B . The Theorem is, of course,

n—l n—i n n n

trivial for n — 0.

Step 1. A1 and Bnl imply Let z and choose any

hyperpiane c not containing z. For a' s 7Z, let
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— F(m) F(m+1). where is the map given by Lemma 7.5.1.
Observe that restricts to an isotnorphism of F(m) with F(m+1) over

\E. Suppose generates Then

generates for m � Indeed,
,lnO:

F(m0) F(m)

restricts to an isomorphism over \ E and so maps any set of

generators for F(m0)5 to a set of generators for Let An(z)

(respectively be the statement "There exists m0(F,z) such

that (respectively generates

(respectively m � in0)". By the coherence of F, implies

for y in some open neighbourhood of z. Since implies

it follows from the compactness of pfl((1) that A(z) for all

Z E impies Therefore it is enough to prove that An_i and

B1 imply

Without loss of generality suppose z r c Set

— F(—1) F and let

K — Ker4: F(—l) F

0 — Coker $: F(—i) -' F.

We have the exact sequence

0 K F(-l) • 0 0.

Tensoring with 0(m) we obtain the exact sequence

0 K(m) K(in-i) —fl-' F(m) 0(m) 0.

Since $ 1U0 is an isomorphism we see that K — C — 0. Let i denote
in U0 U0

the inclusion map of in Pni(a). For any sheaf H on we

let ff* — i1K denote the restriction of H to Observe that

n—i
C 0 acts trivially on K and G. Indeed if a

n—i
P (il) p (II)

e K, then — 0 since K Ker(q). Similarly for C since

O — Hence K*, 0* have the natural structure of

0 n—i
— 0* /1* —modules and the reader may easily verify

P (ii) P"Ot)
that K*, 0* are coherent 0 —modules. Moreover, it is clear that

pn_

K(tn)* K*(m), G(m)* in (3*(m), in e 71.
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By Exercise 12, §3, Chapter 6,

— p � 0, similarly for G(m).

Applying our inductive assumption to K*, G*, there exists ni1 72

such that for p � 1

— — 0, m in1

— 0, in � in1.

We have the short exact sequences

0 K(m) F(m—l) -* 0

0 F(m) -.- G(m) 0.

Taking the cohomology sequences of these short exact sequences we

obtain the exact sequences

H1(P°(q),F(m—1)) . H1 H2(Pui(g),K(m))

-,

Since 0, in � in1, we see that

� dim

for in � in1. Hence din is a decreasing function of m,

in � m1. But now by the finiteness theorem of Cartan-Serre,

< and so we deduce that is

independent of in for in > in2, say. In particular, for in we have

,F(m—1)) —

Since the surjective homomorphism Hh(Pn(a),Im(ct, -'

is between spaces of the same finite dimension, it must be injective,

Therefore, from the cohoinology sequence we see that

+ H°(P°((t),G(m)) is surjective, in � But

— and so by A1 we see that
generates — for m � where we may

suppose In0 � in2. In particular, generates for
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m � in0. We claim that for in � in0, generates F(m)2.

Suppose z c i 0. Let F F(1) be the homomorphism defined

by i4(f) — zif. As described above, restricts to an isomorphism

of F(m) with F . Under this identification of F(m)u with FUUi Ui
i i

the map corresponds to multiplication by t0 — ZO/zi and 0(m)2 i8

therefore identified with F2/t0F2. Let H c F be the submodule

generated by the elements of Since 0(m)2 is

generated by the elements of in � in0, the image of H2

in F2/t0F is the whole of F2/t0F. That is, F2 — t0F2 + H2. Since

c it follows from Nakayama's lemma that F2 — H2.

Step 2. An implies

For p > a, we have already shown that — 0 for
all in. We prove by decreasing induction on p. So suppose that

for every coherent sheaf F on there exists in0 — tn0(F, p) such

that — 0, in � in0. By An there exists in 7Z such

that generates F(m)2 for all z pfl01) Choose a

basis of We have the exact sequence

o K
0k 0,

where a — (Sp. and K = Ker(s). Tensoring by 0(q) yields the

exact sequence

o -' K(q) F(m+q) 0

and corresponding portion of the cohomology sequence

-*

By the special case of B described at the beginning of the proof.

• 0 for p > 0, q � 0. By our inductive assumption,

— 0 for sufficiently large q. Hence

0 for sufficiently large q. This completes the

inductive step and the proof of the theorem. 0
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Remark. The reader should note the crucial played by

the finiteness theorem of Cartan—Serre in the proof of Theorem 7.5.3.

in §6, we give another proof of Theorem 7.5.3 depending on Grauert's

finiteness theorem.

Now for some applications of Serre's theorem.

Theorem 7.5.4. Every holomorphic vector bundle E on P°(cI) has

a non—trivial ineromorphic section.

Proof. By statement A of Theorem 7.5.3, there exists

such that H°(P°(a),E(in0)) generates for all a
pn(q)

In

particular, � 1. But as we showed earlier,

{s e M(E): div(s) + o}. 0

Remark. Of course, we can prove much more than that E has a

non—trivial meromorphic section. Using statement B, we can show that

for any v a there exists s a N*(E) such that s(z) — v. See the

exercises at the end of the section.

Theorem 7.5.5. (Chow's theorem). Every analytic subset of
n

P (II) is algebraic.

Proof. Let X be an analytic subset of P°(a) with ideal sheaf

I. Then I is coherent subsheaf of 0 (see §1 for discussion and

references). We prove: Given z a

p — p(z0,...,z0) which vanishes on X and does not vanish at x.

Granted this, we consider the set of all homogeneous polynomials which

vanish on X. The common zero locus of these polynomials is X and by the

HUbert basis theorem we may choose a finite subset of these polynom-

ials with common zero locus X.

Suppose then that denotes the ideal sheaf of Xu{z}. For

m a Z, we have the exact sequence

0 -+ I -, Q(z)(m) 0

where is the skyscrapper sheaf supported at z. Note that

— U(z). By B of Theorem 7.5.3, there exists m0 such that

— 0, in m0. Taking the cohomology sequence of our

short exact sequence we obtain for a in0 the exact sequence
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0.

Now and so there exists p such

that p(z) # 0. But since I c 0, it follows that Hb(Pm(cl),I(m)) is a

subspace of H°(P°(tI),0(m)) Indeed, it is just the

(non—empty!) subspace of homogeneous polynomials of degree m which

vanish on X. D

Remark. Chow's theorem is a special Instance of a general

relationship between global analytic and algebraic structures on

projective space. This relationship is explained fully in Serre's

G.A.G.A. paper, Serre [3]. In particular, Serre shows that there is

an equivalence between coherent algebraic sheaves and coherent

(analyltc) sheaves on projective space. Chow's theorem is one

corollary of this correspondence. Another is that every holomorphic

vector bundle on projective space is

Theorem 7.5.6. Let F be a coherent sheaf on Then F

has a resolution

by locally free sheaves. We may require that for 0 � j n the
k

sheaf Is isomorphic to a direct sum O(aj)

Proof. Just as in the proof of Step 2 of Theorem 7.5.3,

statement A of Theorem 7.5.3 implies that there exists an exact

sequence

k

0 K1 0
0 F(m0) -' 0.

Setting F — K0 and iterating this construction we obtain for 0 � j � n

exact seqeunces

0.

Tensoring each sequence by an appropriate power of 0(1) we obtain

exact sequences
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0 ._mj) . . 0

and hence a long exact sequence

k k
n—i 0

0 -, 0 ... 0 (p0) F -' 0.

The coherence of Kn(Pni) together with the Hubert Syzygy theorem

imply that is locally free (see the proof of Corollary

7.1.8). 0

Remarks.

1. In the exercises at the end of the section we show how, in

certain cases, we can construct explicitly a resolution of a coherent

sheaf on by locally free sheaves.

2. To appreciate the significance of Theorem 7.5.6 we first need

to discuss Serre'e duality theorem. In Chapter 10 we shall prove

Serre's duality theorem for complex manifolds: Let M be a compact

complex manifold of dimension in and E be a holomorphic vector bundle

on H. Then is isomorphic (not canonically) to

p,q � 0. In particular, if q 0,

where K denotes the canonical bundle of H.

Serre duality plays an important role in complex analysis. In

particular, it gives an easy proof of the Riemann—Roch theorem for

compact Riemann surfaces (see Chapter 10). Suppose that H

Then the canonical bundle of is canonically isomorphic to
Chapter 5). Theorem 7.5.2 implies immediately that

eK), p � 0, in s A simple

computation shows that we have a (canonical) Serre duality for any

sheaf on which is a direct sum of sheaves 0(m). Theorem 7.5.6,

together with some basic facts from homological algebra, now allows

us to verify Serre duality for any locally free sheaf on Even

more, we may prove a duality theorem f or arbitrary coherent sheaves

However, the formulation of this duality theorem will now

involve "Ext" groups. These matters are explained further in

Griffiths and Harris [1] and Hartshorne [1,21. We should also mention

that Ramis and Ruget [1] and Ramis, Ruget and Verdier [1] have
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developed a general duality theorem applicable to analytic spaces and
proper analytic maps.

For the remainder of this section we make a preliminary study

of holomorphic vector bundles on projective space.

Proposition 7.5.7. The group of holomorphic line bundles on

is isomorphic to the infinite cyclic group generated by the
hyperplane section bundle H.

Proof. First note that the group generated by H in

is infinite cyclic. Indeed, is isomorphic to if and only if

Ho(Pn(a),O(p)) and by Theorem 7.5.2 this happens if and only if

p — 0. It follows from the cohoinology sequence of 0 0 0* 0

and the vanishing of that

where the isomorphisin is given by C1, let. Chern class map. By

topology, 72, n 1. Let c pn(e) We have the

coemutative diagram

c1

jr

Hl(pl(e),o*) 72) Z

where the vertical maps are induced by inclusion. Now we know ftom

Example 13, §3, Chapter 6 that H generates Hl(P10t),0*). But r maps

the hyperplane section bundle of to the hyperplane section

bundle of P1(e) and so c1r(H) generates By the

commutativity of the diagram it follows that H generates

0

We now work tow*rds a classification of holomorphic vector

bundles on P'(a). Suppose L HLB(P1(a)) and s c M*(L). Now

deg(div(s)) is independent of a and depends only on L — §5, Chapter 1.
We set deg(L) — div(s), where s is any non—trivial meromorphic
section of L. By Proposition 7.5.7, L Hd for some d Since

admits a meromorphic section whose divisor had degree d, we see
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that deg(L) — d. Indeed, deg(L) — c1(L) — c1(Hd) — d, where we make

the usual identification of with ZZ . Suppose that E is

a hoiomorphic vector bundle on of rank k and let s E M*(E)

(such sections exist by Theorem 7.5.4). Since the zeroes and poles of

s are isolated points, div(s) is a well defined element of V(P10L))

(this would not be the case if E were a holomorphic vector bundle over

a complex manifold of dimension greater than 1). For each z e

there exists such that — and 3& 0.

Define a subset L8 c Eby — hO, z P'(cI). It is easily

verified that L8 is a locally free subeheaf of E of rank 1. Hence is

is the sheaf of holoinorphic sections of a holoinorphic line subbundle

L8 of E. By the construction a for all a a P1(e) and so

we may regard s as defining a merotsorphic section of L8. Clearly the
bundle L5 is uniquely determined by these conditions. Set

d(s) — deg(L5). We claim that max{d(s): a M*(g)} < Since

0(d(s)), we have dim — d(s) +1 (that is, the

dimension of Clearly,

for all s a M*(E). So if d(s) were unbounded, this would contradict

the finiteness of Set a1 — max3d(s). Choose a

holoinorphic line subbundle L of E of degree a1. Thus 1. 0(a1) and

we have the exact sequence

0 -' O(a1) + E ÷ F + 0,

where F — E/L is a vector bundle of rank k—i on

Theorem 7.5.8 (Grothendieck). Let E be a holomorphic vector

bundle on P1(e) of rank k. Then there exists a unique aequence

a1 ... � ak of integers such that

E

Proof. We prove by induction on k. Suppose true k—i. Then

as we showed above there exists a holomorphic line subbundle L C E of

maximal degree, say a1, and exact sequence

(*)....
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where F is a holomorphic vector bundle of rank k—l. By the

inductive assumpt ion

F

We claim a1 If not, a2 � a1+l and tensoring (*) by O(—a1—l)

we obtain the exact sequence

0 + O(—l) + E(—a1 —1) F(a1 —1) 0.

Taking the cohomology sequence, together with the vanishing of

we deduce that

—1)) —1)).

k

Now —1) —a1 —1). Therefore since a2 _al —l � 0,

H (P (g),F(—a1 —1)) # 0 and so E(—a1 —1) admits a non—trivial

holomorphic section. Hence E(—a1 —1) contains a holomorphic line

bundle isomorphic to H1', p � 0. Consequently, E contains a

holouiorphic line bundle isomorphic to which is of degree

p+a1+l, contradicting the definition of a1.

Next we claim that the sequence (*) splits. This is a

consequence of a general splitting lemma.

Lema 7.5.9. Let 0 -* F 0 be an exact sequence

of coherent sheaves on the complex manifold N. Suppose that H is

locally free and that H1(M,Hom(H,F)) 0. Then the sequence splits.

Proof. We refer to the exercises at the end of §1 for the

definition of Hom(F,G). See also the exercises at the end of §1,

Chapter 6. Since H is locally free the sequence

0 Hom(H,F) Hom(H,G) Hom(H,H) -. 0

is exact. Taking the cohomology sequence we deduce that

H°(M,Hom(H,G)) H°(M,Hom(H,H)) 0
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is exact. Therefore there exists c: H -, G which is mapped to the

identity homomorphism of H. That is, be — Id. 0

Returning to the proof of our theorem we see that

k
Hom(F,0(a1)) — F*.0(a1)

Now a1_aj 0 and so —0. Hence we may apply

the splitting leimna to deduce that (*) splits. But then,

k

E 0(ai).
j.2

Finally the uniqueness of the sequence a1 � ... follows

by observing that the number of a1's equal to em is precisely

0

Remark. Much is known about the classification of

holomorphic vector bundles on compact Riemnann surfaces. See Gunning

[3], N. Naraaimhan [11 and Tjurin [1).

Theorem 7.5.8 does not generalise to vector bundles over
pn(ff) n > 1.

Examp'e 1. TP2(1) is not a sum of holomorphic line bundles.
Suppose the contrary. Then TP2(1) 0(a),0(b), where we may suppose

a � b. Taking the Euler sequence for we therefore have the

exact sequence

0 0 ÷ 0(a) .0(b) 0.

Suppose a � 2. Tenaoring the Euler sequence by 0(—2) and taking the

cohomology sequence of the resulting short exact sequence we find
H°(P2(fl,0(—l)3) H°(P2(aa,0(a—2) ,0(b—2)), which cannot be since

the first cohoniology group is zero, the second non—zero. Therefore,

a,b � 1. Now take the cohomology sequence of the Euler sequence and

count dimensions of the zero dimensional groups to derive a contra-
diction. (The same analysis will show that TPT'(a) is never a direct
sum of line bundles for n � 2).
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Suppose that c pn(g) is a line (that is, t

Grothendieck's theorem, together with a similar analysis to that

presented in the example above, shows that

We say that a holomorphic vector bundle E on of rank is uniform

of splitting type (al,...,ak) if for every complex line c

k

— ®
i_i J

It can be shown that a uniform bundle of rank k < n is a direct sum

of line bundles and that if k — n then it is either a direct sum of

line bundles or of the form (see Okonek,

Schneider and Spindler [1; pages 70,7l].

However, not every holomorphic vector bundle on is

uniform, n > 1, and the problem of classification is still open.

Substantial progress has recently been made in the classification

of a class of rank 2 vector bundles over P3(e) — the so called

instanton bundles — which give rise to self dual solutions of the

Yang—Mills field equations. An important feature here is the

appearance of moduli in the classification. For references, together

with an up—to—date survey of the theory of holomorphic vector bundles
on projective space, we refer to the book by Okonek, Schneider and
Spindler U).

Exercises.

1. Let E be a holomorphic vector bundle on and v

Show that there exists a s N*(E) such that 8(z) — v.

2. Let H c be algebraic. Show that Serre's Theorems A and

B hold for all coherent sheaves on H (twist with the hyperplane
section bundle restricted to H).

3. Verify that
1. is not a sum of line bundles, n > 2.

2. TP°(a) is uniform of splitting type (2,1,.. .,l), n a 1.
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(Hint: It may be useful to recall that (m+n))

4. Show that Grothendieck's theorem (Theorem 7.5.8) is equivalent

to the following statement about invertible holomorphic matrices:
Regarding as the 1—point coinpactification of let t > 1 and

set U1 — (a t Izi < t},U2 — (z s Izt > 1). Suppo8e

H E GL(n,A(U12)). Then there exist P E GL(n,A(U1)), Q e

such that PMQ is a diagonal matrix with diagonal terms t

5. (Koazul complex) Let A be a commutative ring with I and for

m 1, let denote the standard A—module basis of Am (that

is E1 — (O,O,...,1)). The A—module has

A—module basis {E — E A ... A E : 1 � ... <j � n). Suppose
J ii ip p

that a A, set f a Am and let I denote the

ideal in A generated by f1,... Show

a) We have the Kosaul complex

of A—module homomorphisms, where aa Cfa. That is, if
a — a APAm then

1+1
L L (—1) E, A ... A A ... A E
J i—i Jj p

Show also that 3(Al.Am) — I.

b) Let
—

denote the ideal in I generated by
We say that is a regulcw sequence if tk is

not a zero divisor in A/Ik_l, k — 1,... ,m.

Show that if is a regular sequence, then the Koazul
complex is exact (Hint: prove by induction on m. See also Griffiths
and Harris El; pages 688—690]).

Now suppose that p1 a is homogeneous of degree

1 � j � is, and let p — denote the corresponding
section of E 0(d1) s... Set X — Z(p) c ?(C). Show
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c) If is a regular sequence in then

the Koezul complex

—

is a locally free resolution of

(See also Exercise 14, U, Chapter 6. The assumption on

amounts to saying that X is a complete intereectwn).

6. Let E be a holomorphic vector bundle on the compact Rieanann

surface H. Given d 0(M), we Bet E(d) — EGEd). Suppose d,d' E 0(M)
k

and that d � d'. Set d' —d — Pj.Zj. where each > 0. Show
i—l

a) We have a natural exact sequence

0 E(d) E(d') F 0

where F is the "Manhatten" sheaf whose stalk is zero except at points

Xj S Id' —dl where we have F q — dim(E).
xj

b) If we define x(E) — — then

X(E(d)) — qdeg(d) + x(E).

(Bint: The alternating sum of dimensions in an exact sequence

0 +L0 • L1 + ... 0 of vector spaces is zero).

c) � qdeg(d) + x(E).

d) K ha8 non—trivial meromorphic sections.

e) In case K is a holomorphlc line bundle on H, there exists

d a 0(M) such that K (d) and c1(E) — deg(d).

f) 01(M,M*) — 0.

7. Let H be a compact Riemann surface. Given d a 0(M), set

1(d) — dirQl°(M,[d]); 1(d) — Show that

1(d) — 1(d) — deg(d) + 1 —
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where g —

(Riemann—Roch formula).

Deduce

a) 1(d) � deg(d) + 1 — g (Riemann's inequality).

b) If deg(d) � g+l, there exists m E M*(M) such that div(m) +

c) N may be represented as a branched over of P1(e) with at most

g+l sheets. In particular, if g 0, N

(We remark that g is actually the genus of H. In particular, g is

a topological rather than analytic invariant of H. To see that g is

the genus of H (that is we note that Serre—duality

implies that H1(M,O) — Now take the cohomology sequence

of the short exact sequence o -, + o 0 — see Example 23,

§1, Chapter 6).

§6. The Kodaira embedding theorem.

In this section we prove a version of the Kodaira embedding

theorem due to Grauert. The main step in the proof is a cohomology

vanishing theorem for coherent sheaves on a compact complex manifold

admitting a weakly positive vector bundle (for the definition of

weak positivity, see §10, Chapter 5).

First some notation. Suppose that E is a holomorphic vector

bundle on the complex manifold N. We let denote the s—fold

synretric tensor product of K (this is just the usual tensor product

if E is a line bundle). If F is a coherent sheaf on N, we let

denote the E—twisted sheaf

Theorem 7.6.1. (Grauert (1]). Let K be a weakly positive

vector bundle on the compact complex manifold N. Then for any

coherent sheaf F on H, there exists in0 — m0(F) such that

— 0, p � 1, in � in0.
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Proof. Let r: E* -p H denote the dual of S. Then E* is weakly

negative and so there exists an s.L.p. neighbourhood D of the zero

section of 5*• Set F — Then F is a coherent sheaf on D

(Example 6, §1). We shall show that for N 0, there exists a

canonical linear injection

Since Grauert's finiteness theorem implies that is finite

dimensional, p � 1, the existence of such an injection certainly

implies that is zero dimensional, for all sufficiently

large s, p � 1.

Let u denote the zero section of E* and i: N + 5* the

canonical inclusion of N on w. Set 0 — and note that 0 has the

natural structure of a sheaf of ON_modules (not of finite type).

For a � 0, we have a natural OH_morphism

x5: S

defined by
—

z H, v5 c

That is, and so defines a homogeneous

polynomial map of degree a from to Evaluate at points of

the fibre The map x5 is obviously infective. Moreover, if we set

N N
—

a—O s—0

it is clear that is also infective since the image of each

consists of analytic germs which are homogeneous of degree a in the

fibre coordinates. Furthermore, we can define an OH—morphism
•, N

0 which is a right inverse for (that is, — Id).
s—O

To do this suppose g2 a Then, by Taylor's theorem, we may write

where fj
°Mz'

a Now define

i — (J is the N—jet of along the fibres

of E*). Since i is a biholomorphism, we have induced maps
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N
1

Fe E ? (— (iT F)eiTl
a

N
3:

N u
s—O

satisfying — Id, and induced maps on cohomology

N

__________

H"(M,Fo < )
(1)

(Exercise 14, §3, Chapter 6). In particular, is injective,

p,N � 0. Let r — 11(TTID): D + w and k: w + D denote the inclusion.

Now rk is the identity map on w and so we have the commutative

diagram

Id
)

(see Exercise 15, §3, Chapter 6 and note that = F, — F).
But therefore r* is injective and so the nap

—

is injective, p � 0. 0

Suppose that F is a holomorphic line bundle on the compact

complex manifold M and that for each z c N, there exists a e H°(M,F)

such that s(z) 0. Choose a Cr—basis se,.. •'5k for H0(M,F). Then,

as we showed in §9, Chapter 5, a = defines a holomorphic

map of ii in Pk(Cr). We shall say that F is (respectively very

ampre) if H0(M,F) determines a holomorphic map (respectively

embedding) of H in some projective space. We remark that if F is

ample (respectively, very ample) then so is Fk, k 1.

Theorem 7.6.2. (Kodaira embedding theorem). Let H be a

compact complex manifold and suppose that E i8 a weakly positive

vector bundle on M. Then N admits an embedding in projective space.
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Proof. (Grauert {l]). We shall prove the theorem in case E

is a weakly positive line bundle. The proof in case E is a bundle

of rank greater than 1 is similar except that M gets embedded in a

Crasemann manifold (which, of course, can be embedded in projective

space).

First we show that there exists ouch that HO(H,Ek)

determines a holomorphic immersion of M in projective space, k � k0.

Fix a c M and let
J2

—
where is the ideal sheaf of z.

The sheaf is coherent and we have the short exact sequence

(A).... 0
°M

+ 0,

where J(z) is the skyscrapper sheaf supported at z with stalk

Now — That is, measures the first two

terms in the Taylor expansion of f2. By Theorem 7.5.1. there exists

k(z) such that Hl(M,12,Ek) = 0, k�k(z). Tensoring (A) with Ek and

taking the cohomology sequence of the short exact sequence we deduce

that
0 k TA 0 k
H (M,E ) —'H (M,J(z) ))

is surlective, k � k(z). Since H0(M,J(z) J(z), we deduce

that RO(M,Ek) determines a holomorphic embedding of some open neigh-

bourhood of z in projective apace, k � k(z) may be chosen

independently of k � k(z). Indeed, a that works for k(z) will work

for k > k(z)). Doing this for every z t ii and using the compactness

of N we obtain a finite cover of N, corresponding integers

k
such that H0(M,E i) determines a holomorphic embedding of

in projective space. Taking k0 — we see that HO(M,Ek)

determines a holomorphic immersion of N in projective apace, k ? k0.

Set U = U xli ) c N x H. For (x,y) a (Mxii) \U, let Tx denote
i_i

the sheaf of germs of holomorphic functions on H vanishing on {x,y).

Just as we did above, we find that there exists m(x,y) such that for

in � m(x,y) the natural map

HO(M,ETh) sEin)
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is onto. Hence there exists a neighbourhood W of (x,y) in MXM

such that if (x',y') e W, there exists s t HO(M,Est) with s(x')

m � m(x,y). Since (llxM) \U is compact, we may find an open cover

of (MXM) \ U and corresponding integers such

that given (x,y) a there exists 8 c HO(M,Est) with s(x) #

m � Now let a0 — Our construction guarantees

that Em is very ample for m � a0. 0

Remarks.

1. Kodaira's original proof of Theorem 7.6.2 is rather different
from that of Grauert. Theorem 7.6.1 is replaced by a cohomology
vanishing theorem for cohomology with coefficients in a holomorphic
vector bundle whose curvature satisfies certain posit ivity

conditions. In the construction of the embedding, Kodaira uses
blowing up arguments, in combination with his vanishing theorem,

rather than the twisting arguments we used. The reader may consult
Kodaira and Morrow [1) and Wells [1] for presentations of Kodaira's

original proof. In Chapter 10, we shall prove the cohomology

vanishing theorem ("Kodaira's vanishing theorem") referred to above.

One Important feature of Crauert's proof of the Kodaira embedding

theorem is that it generalises to compact analytic spaces admitting
a weakly positive bundle. For details we refer to Grauert [1].

2. Since P°(a) admits a weakly positive line bundle (H!), Theorem

7.6.2 implies part B of Theorem 7.5.3 of Serre. But part B easily

implies part A by the usual cohomology sequence arguments and so

we see that Theorem 7.6.1 may be regarded as a generalisation of

Theorems A and B of Serre.

3. Chow's theorem implies that the image of H in given by
Kodaira'a embedding theorem is an algebraic set. We may actually

embed H in m — We indicate briefly why this Is so

(for details see Griffiths and Harris [1] and also Hartshorne [1]

for the case of curves). Let I c
pN(g)

denote the union of all

projective lines which are either chords or tangents to M (that is,

its image in It may be shown that I is an algebraic subset

of of distension � 2m+1. In particular,
pN(g)

\E will not

be empty provided N > 2m+1. Choose any c
pN(g)

and
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p \ (E Project M into PN_l(e) from P. Clearly

the projection is an injective immersion — P E — and so defines an
N-i

embedding of H in P (fl.

We end with an example.

Example. Let A c be a lattice and suppose that A admits a

Riemann form. That is, we shall assume that there exists a positive

definite Herinitian form H on whose imaginary part is integer valued

on A (see Chapter 4, §4; Chapter 5, §9). We claim that T • is an

abelian variety. We shall prove this by showing that the holomorphic

line bundle L(H,1) on T is weakly positive and applying Kodaira's

embedding theorem. By Exercise 6, §9, Chapter 5, e(z) — expuH(z,z),

z e &', determines a smooth nowhere vanishing section of

L(H,l)eL(H,1). Define ÷ IRby — 1t128(z) and observe

that ri induces a smooth map L(H,l)* L(-.H,l) + (n is the

square of the radius function on L(H,1)* associated to the hermitian

metric on L(H,l)* determined by e). A straightforward computation

shows that is positive definite provided that t # 0. Hence

L(fl) is certainly positive definite off the zero section of L(H,1)*.

Setting D — tv £ L(H,l)*: < 1), we see that D is an B.L.p.

neighbourhood of the zero section of L(H,l)* and so L(H,l)* is

weakly negative. Hence L(H,l) is weakly positive.

Exercises.

1. Prove Theorem 7.6.2 in case E is of rank greater than 1.

2. This exercise is a continuation of exercises 6, 7 of §5. Let
N be a compact Rieinann surface. Show that if a s H then jI'

p � 0, where denotes the ideal sheaf of {z}. Suppose that E is a
holomorphic line bundle on M. Prove

a) If c1(E) � 2g—l, then H1(M,E) — 0.

b) If c1(E) � 2g, then E is ample (see the proof of Theorem

7.6.2).

c) If c1(E) � 2g+l, then E is very ample.

Deduce that every compact Rieinann surface is algebraic.
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3. Show that every compact Rieinann surface H admits an open

covering by two Stein open sets (Hint: Embed H in PN(a). Consider

the intersection of H with two hyperplanes H1, H2 chosen so that

MflH1nH2 — 0. Show that {M\H1: i—1,2} is a Stein open cover of K).

Deduce that HP(M,F) — 0, p ? 2, for every coherent sheaf F on K

(see also Grauert and Reunert El; page 210)).
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(Page numbers referring to items in Part I are italicised)

Abelain variety, projective
embedding, 192

Algebraic set (projective), 14.6

Algebraic manifold, 147

Almost complex manifold, 2.4

Alternating tensor, 4

Ample vector bundle, 194,197

Analytic continuation, 3,49,54,89

Analytic equivalence, 135

Analytic extension of spread manifold,
ff9

Analytic function of one variable, 1;
of several variables, 44

Analytic function on analytic set, 29
Analytic hypersurf ace, 767

Analytic map, 735
Analytic polyhedron, 61,69,145
Analytic sheaf, of finite type,

128

Analytic space (reduced),
(unreduced), 84

Analytic subset, 51,137

Anti—holoinorphic vector bundle, Th
tangent (cotangent) bundle, 29

Apell and Humbert theorem, 55
Approximation of analytic functions on

Stein manifold, of sections
of coherent sheaf over Stein
manifold, 1.54

Atlas (complex analytic), 17,134

Basis for complexification of complex
vector space, 23

Base locus (of linear system), 51

Bergman kernel function, of

polydisc, of Euclidean disc,

91; Levi form of, of complex
manifold, 64

Biholomorphic, 16,18,135
Biholomorphic inequivlaence

of disc and polydisc,
9 2.138

Bimeroinorphic invariant, 52
Birational invariant, 1.8.5
Blowing—up,177, with non—

singular centre, 129

Blowing down, 1.65

Bounded domain, 1.82

Branch point, 2Q
Calabi—Eckmann manifold, 145

Canonical bundle, 151,45; of
projective space of
hypersurface, 51

Canonical resolution of sheaf, 98

Cartan theorems A and B,
155,165

Cartan—Thullen theorem,
Cartier divisor, 122
Cauchy's inequalities,

see also

Cauchy's integral
for polydiscs, 4.6

Cauchy—Riemann equations, 1
Cayley—Pliicker-Grassmann

coordinates, 749
cohomology group, 113

Centre (of blowing up), 177

Chart, 14

Chern class (first),l17,122,l23,
of hyperplane section

bundle, of holomorphic
line bundle on 1.85

Chow'8 theorem, 148,182

Classical domain, 769

Closed form, II



Closure of modules theorem1 133.153

Coboundary operator (in theory),
101

Cocycle condition,

Coherence of ideal sheaf,

inverse image, direct
image, 131

Coherent sheaf, 132

Cohomology, sheaf, singular, 103

Cohomology of O(m) sheaves on
175

Commutative vector space algebra, 2

Compact linear map between
spaces,

Complex differential form, 28

Complex Lie group, 139.151

Complex line on
differential manifold, 116

Complex manifold, analytic
structure, 135

Complex multiplication, 162

Complex projective space, 14.5

Complex (r,s)—vector/form, 22

Complex structure (on vector space),
29,17; conjugate structure, 22

Complex structure on vector bundle,
26

Complex submanifold,

Complex tangent (cotangent)
bundle, 28

Complex torus, 151,53; embedding
of, 19.1

Complexification, of linear
map, of complex vector
bundle, 26

Composite mapping formula,
Conjugate vector space, 29,17; dual

space, 29,18; complex vector
bundle, 21

Conjugation,

Constant sheaf, 20

Contraction, compoistion 71
of sections of vector bundle, Li

205,

Convex hull (closed), 82

Convexity, strict, Z6

Cotangent bundle, 28,28; holo—
morphic, anti—holomorphic.

Cousin doamins, 93,94,114,115

Cousin problems 93,94,114,115,
173,41,78.108.141

Cousin problem on polydiacs, 41

Cubic curve, 147,158

d (exterior differentiation),
as morphism of sheaves,

Defining function of domain in
complex manifold, 60

Deformation of complex structure,
154

Degree of divisor, 22

Degree of holomorphic line
bundle, 121,122,185

Derivation, 12

Derivative of analytic map, 44

Desingularization, 179,181

Differential form, real,
complex, 28

Di8criminant locus, 116

Distinguished boundary,

Direct image sheaf, 82,88,126

Direct sum of sheaves, 71

Divisor, 8,179; Cartier, 173;
Weil, 172

Divisor class map 33,174,47

Divisor group,

Divisor in normal cro8singa,
183

Divisor of merotnorphic function
of one variable, of
several variables, on
complex manifold, 41

Divisor sheaf, 28

Divisor8 on compact complex

complex projective apace,
175; Riemann surface, ii



Divisors, linear equivalence,
linear system of,

Dolbeault complex, 76,81,105,139
Dolbeault isomorphism, 105.106
Dolbeault—Grothendieck lemma,

Domain of existence, 68
Domain of holomorphy,
Doubly periodic function, 155
Dual pairing, 4

Dual vector bundle, 27
s—operator, 32,34; for holomorphic

vector bundle valued forms,
as morphism of sheaves,

74.76,81
Effective divisor, 49

Elliptic function, 155,56

Embedded resolution of singular-
ities, 183.184

Embedding of Stein manifold,
of complex 1—dimensional
tori, 158; of compact
Riemann surface, of
complex tori, 191

Envelope of holomorphy,

Espace 12

Essential singularity, 5

Euclidean disc, 4,5

Euler sequence, 44,45; Euler
vector field. 44

Exact form, LI
Exactness of Dolbeault complex,

of de Rham complex, Th
Exactness of sheaf sequence, 7.5
Exceptional curve of first

kind, 185

Exceptional variety, 177

Exhaustion function,

Exotic complex structure,

Exponential sequence, 116,117

Exterior algebra of vector space,
of complexification of complex
vector 8pace, 22

206.

Exterior differentiation,

Fine resolution, 98

Fine sheaf, 92

First Chern class, 177; see
also under

Flabby sheaf, 97,125

Flag manifold, 150

Fractional power series, 125

space, 159

Frgchet sheaf,
Free resolution, 126

Free sheaf of modules, an

Fundamental region (for SL(2.Z)).
153

Genus, 19,192

Geometric genus, Si

Germ of function, set, 118;

section (of sheaf), 61

Graded vector space, algebra,
2

Grassmann manifold,
coordinates, 112

Grauert finiteness theorem for
pseudoconvex domains, 168

Grauert theorem on holomorphic
convexivity of s.L.p.
domains, 171

Grauert vanishing theorem for
weakly positive vector
bundles, 192

Grothendieck splitting theorem
for vector
bundles on P (E), 186.190

li—pseudoconvex. 87

Rartogs figure, generalised,
55

Hartogs theorem on extension of
analytic functions, 53,57;
separate analyticity,
singularities of

analytic functions, 53



Hermitian form, 58; on complex
manifold, 59,119

Hessian,

Hubert Syzygy theorem, 126

Hodge conjecture, 124

Holomorphic function: see under

Analytic function

Holotnorphic convexivity, 62; of
s.L.p. domain, 171

Holomorphic line bundle, 32; on
projective space, group
structure, 185; on complex
torus, 53

Holomorphic tangent (cotangent)
bundle, 29

Rolomorphic tangent space to
boundary of s.L.p. domain, 60

Holomorphic vector bundle, 26;80;
on 185

Bolomorphic vector bundles on
universal bundle, 42; hyperplane
section bundle, 43; Euler
sequence, 44; existence of
non—trivial meromorphic
sections, 11.2

liolomorphically complete, 86,62

Homogeneous coordinates, 146

Homogeneous domain, 139

Homomorphism of sheaves: see under
Sheaf morph iam

Hopf fibration, 146

Hopf manifold, 164; surface, 164

Hopf 0—process, 1??

Ryperelliptic curve, 159

Hyperplane in projective space, 147

Hyperplane section bundle on
projective space, 43; sections
of 43; Chern class, 119,185

Hyperplane section bundle of
aubmanifold of projective
space, 41

Hypersurface, 167; in normal
crossings, 183; of degree d,
172; in Stein manifold, 141,
142

Ideal presheaf (of analytic
set), 67

instanton bundle, 189

Integration (of forms), 12

Interior product, 5

Inverse function theorem, 44

Inverse image sheaf, 81,82,87,88

Irreducible analytic set, 170;
components, 171; domain,
140; element of ring, 106;
germ, 107,122; Weieratrasa
polynomial, 107

Isasawa manifold, 16?

Isomorphism of sheaves: See

under Sheaf morph jam

Jacobi identity, 13

Jumping of complex structure, 164

Kernel function: See under
Bergman

Kodaira embedding theorem, 194

Koazul complex, 88,142,143,190

L.p. domain,

Lattice, 151

Laurent series in one variable,
3; in several variables, 48

Legendre's relation, 55

Length (of resolution), 126

Leray cover, 111

Leray's theorem, 13,109

Levi form, 7?; on complex
manifold, 59

Levi pseudoconvex,

Levi's problem, 82,172

Levi theorem, 80

Lie algebra of vector fields on
complex manifold, 32

Lie bracket, 12,28

Lie derivative, 12,13,28

Line bundle (complex), 30;
holomorphic, 32; real, 31
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Linear equivlaence of divisors,

Linear system of divisors, 512

Local isomorphism of sheaves,

Local models,

Locally free resolution of coherent
sheaves on

Locally free sheaf, 012

Maximum Principle,

Meromorphic function of one variable,
of several variables, .33

Meromorphic function on complex
manifold, on complex torus,
155.56; on Riemann surface,
17,192

Meromorphic section of vector bundle,
33,47; on pfl(0), 182

Minimal model, 185
Mittag—Leffler theorem, 112

Moduli space, 154

Moishezon manifold, 186

Monodrouiy theorem, 4

Monoidal transform, 177

Montel's theorem,

Morphism of spread manifolds, 09

Morphism of sheaves: See under
Sheaf morphism

Multi—index notation, 46
Nakayama's Lesma, 128

Normal crossings, 1.63
Normal exhaustion,
Normalised analytic function,

simultaneous normalisation, 1124

Nullstellensatz, for principal
ideals, 123

Oka principle, 143

Oka presheaf, sheaf,
sheaf of analytic set, 78

Oka theorem, 129

208.

Open mapping theorem for
analytic maps,

Open mapping theorem for
spaces, 159

Order (of pole, zero), 7,17,33

Orientable manifold, 136,12
Osgood's theorem, 62

101

p..cocycle, coboundary, 1122

pth. tech cohoanology group, 113
pth. cohomology group of U

with values in F, 1121

pth. sheaf cohomology group, 99
Partition of unity, flj of sheaf,

91

Period parallelogram, 155

Picard variety, 36,124

Plurigenera, 53

Plurisubharmonic, 85,62;
exhaustion function, 87.62:
strict,

theorem, 138
Pole, .3

Pole set of meromorphic function
of one variable,
meromorphic function on
Riemann surface,
several variables, 114

Polydiac, 45

Positive divisor,

Power series in one variable,2
in several variables, 4.Z

Power series ring, 96

Presheaf,

Presheaf cokernel, image, kernel,
21

Presheaf of continuous 0—valued
r—valued functions,

functions analy-
tic functions,

meromorphic functions,
ideals, Ox_modules
holomorphic sections of
holomorphic vector bundle, 61



Presheaf exactness, 71

Presheaf morphism, 13

Projective embedding of complex
torus, 158.197; compact
Riemann surface, 192

Projective resolution: See under
Reaolution (pro jeotive)

Projective space (complex),
algebraic set, 116

Proper discontinuous action, 162

Proper map, 138

Property (R), 146,149,151

Property (S), 61

Pseudoconvex, H—, Levi,
29; strictly Levi,
q—, strictly q—,

Puiseaux series, 12.5

Pull back of vector bundle,
of divisor of sheaf,

82,87.88

q—complete manifold,

q—plurisubharmonic function, 62

q—pseudoconvex manifold,

Quadratic transform, 177

Quotient of sheaves, 71

Radical (of ideal), 120

Rado's theorem, .52

Rational function, 14.8i on
projective space, 175

Reducible analytic set, 1712

Refinement map, 112
Regular point of analytic set, 116
Reinhardt domain, .50

Relatively prime germs, 112

Reproducing property of kernel
function, 21

Resolution of module, 1.25

Resolution (projective) of coherent
sheaf, 142,145,146,183

Resolution of sheaf, 98

209.

Resolution of singularities, 1.83

Restriction of sheaf, 81

de Rham cohomology group, 12,105

de Rham complex 75.104

Riemann removable singularities
theorem in one variable,
in several variables, 51,145

Riemann domain, sphere,
surface, 16

Riemann form, 16(2

Riemann—Roch theorem, 35.191

Riemann'a inequality, 35.192

Runge approximation theorem,

Runge domain, 95,139

sA..p. domain
Schubert calculus, 150

Schwartz lemma, 5

Schwartz finiteness theorem, 161)

Sections of holomorphic vector
bundle, finiteness theorem,

Section of vector bundle, 21
Section of sheaf defined over

closed set, 83

Self—conjugate basis, 24

Segre embedding, 116

Serve duality theorem, 184

Serve theorems A and B, 178.189

Sheaf cohomology group,
relative to open cover, 1.1)7

Sheaf cokernel,image, kernel,

Th quotient, lB

Sheaf exact sequence,

Sheaf direct sum, tensor
product, 29

Sheaf hoinomorphicm,
isomorphism, 71 morphism,

local isomorphism, 81)

Sheaf of germs of continuous
functions,

functions,



analytic functions,
locally constant functions,
meroinorphic functions, 115,135,70;
divisors, sections of

holomorphic vector bundle, 70

Sheaf of 0—modules, 21)

Sheaf of relations, 129

Sheafification, 68

Short exact sequence of sheaves, 75

Siegel domain (of second kind), 141

Singular cohomology, 103

Singular point of analytic set, 118

Singularity, 20

Soft sheaf,

Spreading of domain in of

Riemann surface, 1.9

Stalk (of sheaf), 68

Stein cover of compact Rietnann

surface, 198

Stein manifold, 142; embedding
in 143

Stieltjea—Vitali theorem: See

under Mantel

Stokes' theorem, 12

Strict transform, 110
Strictly Levi pseudoconvex,
Strictly pseudoconvex manifold, 111
Subharmonic function, 83
Subpresheaf, 20

Subaheaf, 70

Support of section of sheaf, 82

Support of sheaf, 81; of coherent
sheaf, 131

Syunetric domain, 1.39
Synisetric tensor algebra of

vector space, 2
Syzygy theorem, 1.28

Tangent bundle, real,
holomorphic, 31.29; anti—
holomorphic,

Tensor algebra of vector space, 2

Tensor product of sheaves 79

210.

Theta function, 53

Topologization of sheaf,
sections of coherent
sheaf, 152,161

Topology on

Torsion of almost complex
structure, vanishes if
and only if complex
structure, 13

Torus: See under Catnplex torus
Total space (of vector

bundle), 24

Trace,
Transition function,

Transpose (of linear map), 27.29

Trivial extension of sheaf 8L

Trivial theta function, 54

Trivial vector bundle,
Trivialisation of vector

bundle, 24
Twisted sheaves on projective

space, 177

Uniform holomorphic vector
bundle, 1.99

Uniformization theorem, 18,163

Uniqueness of analytic
continuation,

Universal bundle, 151; on
projective space,

V—Herntitian form, 140
Vector bundle, complex,

conjugate (dual),
dual, real, 24

Vector bundle isomorphism,
map, pull—back, 27

Vector bundles, classifying
space,151; exterior product,

syemetric product,
tensor product,

Veronese surface, 51

Very ample vector bundle, 114



Vitali's theorem: see under

Weak continuity principle,

Weakly negative (positive)
vector bundle,

Weierstrass Division theorem,
Preparation theorem, W&

Weierstrass elliptic function, lfifi

Weierstrass polynomial, 12&

Weieratrass Theorem, 12

Weieretraes zeta function,

Weierstrass a—function, 55

Weil divisor, 172

Zero set of meromorphic function
of one variable, of

several variables, 114

Zero—complete (0—complete),

211.
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