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Preface.

Since we have already given a general outline of the aim and
scope of these notes in the preface to Several Complex Variablees and
Complex Manifolds I, we shall do no more here than provide a brief
description of the contents of this volume together with a few notes

of guidance to the reader.

Chapter 5 of the present notes is devoted to calculus on
complex manifolds. The first four sections cover basic linear algebra
and calculus on a differential manifold. Most of the material in
these sections should be familiar (though perhaps not the notation) and
I would suggest reading through them quickly, referring back to them
later, if necessary, for specific results and notation. The next
three sections lead up to the construction of the 5-operator on an
arbitrary complex manifold and also describe the 3-operator for
holomorphic bundle valued forms. In section 8 we prove the Dolbeault-
Grothendieck lemma and solve the Cousin problems for polydiscs in c".
In section 9 we show how holomorphic vector bundles naturally enter
into the study of compact complex manifolds. We discuss, for example,
the Euler sequence for projective space; the geometric genus; theta
functions for complex tori. Finally in section 10, we discuss various

pseudoconvexivity conditions for non-compact complex manifolds.

Chapter 6 is a self-contained introduction to the theory of
sheaves in complex analysis. Section 1 is devoted to sheaves and
presheaves with many examples. In section 2 we show how sheaf theory
can be used to construct the envelope of holomorphy bf a domain
spread in ¢". This section is not used elsewhere in the text and may
be omitted at first reading. In section 3 we define sheaf cohomology
using fine resolutions. After proving Leray's theorem, we go on to
define aech cohomology and prove that it is naturally isomorphic to
cohomology computed using fine reaolutions., There are many important
illustrations of sheaf cohomology arguments in this section. For
example: The de Rham isomorphism between singular and de Rham
cohomology; The Dolbeault isomorphism theorem; the first Chern class
and classification of complex line bundles.

In Chapter 7 we prove a number of foundational results in the
theory of complex manifolds. In section 1 we define coherence and

prove Oka's theorem on the coherence of the sheaf of relations. In



vi.

section 2 we prove Cartan's theorems A and B granted the exactness of
the 5-sequence for locally free sheaves (A proof of this result will
be included in the projected part III of these notes; proofs may also
be found in Hormander [1] or Vesentini [1]). 1In section 3 we prove the
finiteness theorem of Cartan and Serre and in section 4 the finiteness
theorem of Grauert. In section 5 we prove Serre's theorems A and B and
give a number of applications. In section 6 we prove Grauert's
vanishing theorem and,following Grauert, show how it may be used to

prove the Kodaira embedding theorem.
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CHAPTER 5.  CALCULUS ON COMPLEX MANIFOLDS

Introduction.

In sections 1 and 2 we cover basic linear algebra and calculus
on differential manifolds. We define the complexification of a real
vector space in section 3 and in section 4 we develop the main results
of complex linear algebra that we need in the sequel. After giving
some general facts about complex and holomorphic vector bundles in
section 5 and constructing the tangent and cotangent bundles of a
complex manifold in section 6 we reach the heart of the chapter in
section 7 with the construction of the 5-operator on an arbitrary
complex manifold. In section 8 we prove the Dolbeault-Grothendieck
Lemma and, with a little more effort, deduce that the Cousin I and II
problems are always solvable on polydiscs. Section 9 is devoted to
the discussion of a number of important examples on compact complex
manifolds. Thus we construct the Euler sequence for projective space,
prove some basic results about linear systems and their relationship
with holomorphic line bundles and conclude with a discussion of theta
functions and complex tori. Finally, in section 10, we define the
concepts of q-pseudoconvexivity, q-completeness and weakly positive

vector bundles.

§1, Review of linear algebra

In this section we shall review some elementary linear algebra
that does not depend on the assumption of an inner product structure.
We shall generally omit proofs (usually simple) referring the reader
to any one of the many texts in linear algebra. All vector spaces in

this section will be assumed real and finite dimensional.

Definition 5.1.1. A graded vector space E is a collection
{EO'El"") of vector spaces indexed by the positive integers. We
write E = {Ey,E,,...} and set En = E,. We call E_the nth. component
of E. A morphiem T:E ——F, of degree r 2 0, of graded vector spaces

is a collection of linear maps Tiz Ei + F indexed by the positive

i+r
integers.



Examples.

1. Associated to the vector space E we may define the graded vector
spaces @E, AE and OE whose nth. components are respectively @“E, AE

and @"E (nth. tensor, exterior and symmetric powers of E respectively).

2. A linear map T: E + F induces degree zero morphisms
@T: ® ——@®F, AT: AE ——AF, OT: OE ——0OF whose nth. components
are @n'l‘, A'T and O"T respectively.

Definition 5.1.2. Let E and F be graded vector spaces. Then

1. The direct sum of E and F 1s the graded vector space E@®F whose

nth. component is En 9 Fn.

2. The temsor product of E and F is the graded vector space E®F
whose nth. component is @ E_ o F_.
r 8
r+s=n
Definition 5.1.3. A graded vector space algebra consists of a
graded vector space E together with a morphism of degree zero
¢:E®@E ——E, written ¢(A®B) = AB, satisfying the following

properties
1. The multiplication defined by ¢ is associative.
2. There exists a unit element in E for the multiplication.
The algebra is said to be commutative if AB = (—l)quA, A e Ep, B ¢ Eq.

Remark. The universal factorization property for the tensor
product implies that we may equivalently suppose that ¢ is a bilinear

map on E x E.

Example 3. Given a vector space E, ®E, AE and OE are graded
vector space algebras with respective algebra operations of tensor
product, exterior or wedge product and symmetric product. AE is

commutative.

Proposition 5.1.4. Let E and F be vector spaces. Then
AE ® AF has the natural structure of a commutative graded algebra with
wedge product defined by



(xey) A (x'oy') = (-DPYXAX") @ (YAY"),

where X ¢ AE, Y ¢ NF, X' ¢ A9E, Y' ¢ AF.

Proof. We remark only that in all results of this type it is
enough to define the operation or map on a set of generators for the
algebra. 0

Before stating the next result we remark that we say a morphism
of graded vector spaces is an igomorphism if it is invertible and of
degree zero. An isomorphism of graded vector space algebras will, in

addition, preserve the algebra structures.

Theorem 5.1.5. 1If E and F are vector spaces we have a

canonical isomorphism of commutative graded algebras

A(EoF) s AE@®AF .

In particular,

AEoF), ~ @ AEeAF, p 0.
r+s=p
Proof. For r,s 2 0 we define e 8: NE o N°F -»I\(Eol-‘)) by
@1A-..Ae oflA...Af) -(e1+0)A...A(e +0) A(f +0)A.“A(f0+0)
where e, € E,1s1i1sr, j e F, 1 s jJ s s, and the wedge product on
the right hand side of the above relation is taken in /f (EeF). We
leave it to the reader to verify that the maps U s define the required
’

morphism. O

Given a vector space E it is possible to identify AE and OF with
graded subspaces (not subalgebras) of @E and we now indicate how to do
this in the case of exterior powers of E. Fix a positive integer p and
let Sp denote the symmetric group on p symbols. We define a
representation T: S GL(®PE) of S, by

®...0¢e

T(O)(elo... oep) = gign(0)e 9 (p)’

a(l)

where ej e E, 1<jsp,0e¢ Sp. Let Altp(E) denote the fixed point
set of the corresponding action of SP on ®PE. Elements of Altp(E)



are called alternating temsors of order p. The map A: ®PE » APE
defined by mapping e 9... Oep to e; A... Aep induces a linear
isomorphism of Altp(E) with APE, To see this observe that we have a

projection map Alt: efE + Altp(l:‘.) defined by

Alt(elo...ce) = L, Z T(o)(elo...oep).
P * OeSp

Clearly Kernel(Alt) = Kernel(A) and so Altp(E) =~ APE.

Remark. Under the identification of APE with Altp(E) given by

this isomorphism we see that

... ®€

ejh...Ae = —1;- z sign(0)e o(n) "

(]
P P! s, o(1)

Let E' = L]R (E,R) denote the dual space of E and
<, > EXxE' + R denote the dual pairing between E and E'. For p 2 O,
we have dual pairings ®PE * ®PE' + R, APExAPE' + R respectively
defined by

<e10...0ep,¢10...0¢p> = 1i-|1 <e1’¢1>

<e1A...AeP.¢1A...A¢P> - det[<ei.¢j>].

where ey € E, ¢1 € E', 1 <1< p. Using these pairings we identify the
dual spaces of ®PE, APE with ®@PE', APE' respectively. Notice that the
dual pairing of ®PE with ®PE' induces a pairing of Altp(E) with Altp(E')
and so a pairing of NE with APE'. This pairing differs from the
pairingwe have defined between APE and NE' by a factor p!

We leave the case of thedual pairing for the symmetric powers

of E as an exercise.

For p > 0, we define the linear map U: NE + EO/P-IE by

U(elA...Aep) = f (-l)jﬂejoel/\.../\'e'“j/\.../\e

j=1 P

where ej € E, 153js<p, and "~' as usual denotes omission.



Properties of the map U.

1. The operator U is the transpose of A, that is,
<UX,p®y> = <xX,0AY>,

-1
for all X e APE, 6 € E', ¥ e APTE",

2. 1f X € APE, AU(K) = pX.

13 13

3. 1f Ze E8APE, then U(AZ) = Z-A""(I10U)(Z), where A
the operation of wedging the first factor of EoEo/\p-IE into the

denotes

third factor.

4, If we iterate U, the map uP: }\qE +®PEe /\q-pE satisfies the
relation AUP = q!/(q-p)! I, where A: OPEQ/\q-pE -»AqE is just the
operation of wedge product. In particular, if we identify APE with
Alt (E), ve see that Alt UP = p!I, p 2 O.

Properties 1 -3 are easily proved by working on generators,

property 4 may be proved by induction on p.

We conclude this section by describing the operation of
econtraction or interior product of tensors. First observe that since
the dual pairing E' xE + IR is bilinear it corresponds to a linear
map E'®E - R. This map is usually referred to as "trace" as if we
use the natural identification of E'®E with L(E,E) it corresponds to
the operation of taking the trace of a linear map. Trace is the
simplest example of a contraction operation and we shall now consider
generalisations. With a view to later applications we work with tensor
products of exterior powers of vector spaces. Actually this is no loss
of generality since AlE = E, )\IE' = E',

Suppose p 2 q 2 0. We define the linear map
c: APEOAqE' - Ap—qE
by requiring that

<Cxeo) 4> = <pAp,x>



for all X € APE, ¥ e APIE", ¢ ¢ AE'. We similarly define
C: APEoASE" » A9 P

in caae q 2 p.

Given X € APE and q 2 p we define
Cy: Ade" > AT P!

by Cx(¢) =C(Xed), ¢ ¢ AJE'. We similarly define C¢ for & ¢ APE'. We
call C a contraction (operator) and Cx contraction with X.

Properties of the contraction operators C, CX, CO'

1. For p 20, the map C: APE®APE' » R 1s equal to the dual
pairing of APE with APE'.

2. CX is the transpose of the operator '"wedge product with X".
That is,

<Cd,v> = <b,XAY>, X ¢ APE, Y ¢ A°PE, ¢ ¢ A%E .

- - (-1)F8 r a
3. CXCY CYAX (-1) Cxﬂ,x:)\a,ve)\z.

4. For X € E, ('7:/\"1:' ->Ap—1£' is defined on generators by

- j+1 -~
cx(°1" A¢p) jil (-1) <x,¢j>¢1/\ A¢j A "¢p .
We have similar properties holding for contraction with forms.
We omit proofs of the above properties which all follow straight-

forwardly from the definition and standard properties of wedge products.

We now wish to define contractions between factors of an

arbitrary finite tensor product of exterior powers of E and E'. Suppose

n Py P,

that V = ® Vs where each V:l is either A 'E or A "E'. Assume that
i=] P P,

the jth. and kth. factors are equal to /\jE and /\kE' respectively.

. ono ~ - PP
SetV-@Vi,wherevi-viif:lfj,kandvj-m,vk-/\ g
i=1 ~ P;-P - ~
if Py < py and Vj = A 3 kE, Vi = R if Py 2 py (Notice that V ia really



a tensor product of n -1 factors but inclusion of the trivial factor
for the present simplifies our indexing). The contraction between
the jth. and kth, factors of V will be the linear map Ci: Vv
defined on generators by

Ci(--'°xj°"'°%°"') = ...olo...o((xjodk)o.... Py S Py

= ...oC(xJocbk)c...olo.... Py 2Py -

Notice that our convention is that superscripts refer to factors which
are exterior powers of E, subscripts to factors which are exterior
powers of E'. The product Ca(; of the contractions Ci and [; is
defined 1f {1,j} n {1,m} = @ and 1s the simultaneous contraction of the

el . eled
jth. and kth. and 1 and mth. factors of V. Necessarily, Ck(m Cmck.

J
k

.c; is defined to be the composite of the contraction
C; with the contraction Ca, where Ci is a contraction of the space v

The composgition (C
not V. We may also use brackets to describe compositions of contract-
ions. Thus if Z € V, Ci.(;(z) = Cg([;(z)). Notice that V has fewer
factors than V and so, in general, Ci.c; # Cac;.

Example 4. Let p 2 r+s. Then the following diagram of

contractions commutes.

3
ATEOAPE' oASE —2 5> NEo AP 5E"
1
G lc
(-1

NTE 0 g ——2—= 5 A\PTS T
Indeed, let X € A"E, Y ¢ AE, Z e AP"""%E, ¢ ¢ APE'. Then
«CC(xo00Y)),2> = Cy 002>
= (—1)'5<CYCX¢,Z>, Property 2 of contractions.
= (-1)“<(‘§(((xo¢ ®Y)),2>.

Since this is true for all Z ¢ Ap-r-sE’ our assertion follows. In our
notation above we have shown C.Cg = (-l)rsc.(;.



We now list, without proof, some additional properties of

contraction operators.
Properties of the contraction operators C, Cx. C¢ continued.
5. Let X € APE, ¢ € AYE' and suppose q 2 p. Then

1

1
Cxe (q-p) !p! cp+1

P (yPx @yP
czp(u x oUP¢).
In particular, if X € E,
1
Cx¢ = C(xeud).
6. Let X ¢ APE, ¢ ¢ AP*IE" then
PA3
Cxd = 1T (baUX).
7. Let X eE, ¢ ¢ APE', ¥ ¢ AJE'. Then
Cx@aw) = Cy(®) av + (-1)Po ACyy.
8. Let p 2 q > 0 and define

C,: APEoA%’ + APTEopT Mg
by
C,(xe) = Clwxeud), X e APE, ¢ c A%".

Then C = (C))P/p!: APE@AIE" + APTIE.

We end this section with an example giving another characterizat-

ion of trace.

Example 5. Let A ¢ L(E,E) and dim(E) = n. Then the map
A: A"E -*A“E, defined on generators by

K(zlA...Azn) - f ZyA- AAEZD AL AT,
i=1
is equal to scalar multiplication by -trace(A). Working on generators in
L(E,E), let A = $®XeE'®F ~ L(E,E) and Z ¢ A"E. Then
AZ) = XAC¢Z = —(C¢X)Z. Property 7 of contractions. But C¢X is just
trace(A).



Exercises.

1. Verify that @pE' is naturally isomorphic to the space LP(E;IR)
of p-linear real valued maps on E. Show also that MNE' and NPE' are
naturally isomorphic to the spaces of p-linear alternating and

symmetric real valued maps on E respectively.

2. Let p S q. Show that C: MPEe NE' + APE' 15 defined in terms

of generators by the formula

Xy A AX @01 AueiAGl) = ) sign(I,J) <Xy, >... <Xy, >0, Aveohd
1,J 1 p N1

vhere the sum is taken over all p-tuples I = (11,...,1p) satisfying

1s 11’””11) S q and (q-p)-tuples J = (jl,...,jq_p) satisfying

153 <., qep 5O subject to the condition that “1”“’jq-p} is

a permutation of {1,...,q}. Sign(I,J) denotes the signature of this

permutation.

3. Work out CI: /\250/\23' + EOE' in terms of generators and verify
that (C)2 = 2C.

4, Generalise the example at the end of the section to find other

invariants of the map A.

5. Let 0+ E -—A—>F —L*G + 0 be a short exact sequence of vector

spaces and linear maps. Suppose that the dimensions of E, F, G are

Py q, r respectively. Prove that there exists a canonical isomorphism
NF » PE0 NG (Hint: Prove that there exists a natural monomorphism
k: AG' @ IF » AI"TF defined by <k($®X),p> = <A'B' () A¥,X>, ¢ ¢ NG,
Xe AF, p ¢ ANTF', Show that image(k) = Image(/\pA)). More generally,
show that for n 2 1 we have a natural exact sequence

0+ NE+NF > A lgar+0

6. Let dim(E) = n and ¢ ¢ E', ¢ # 0. Show that the sequence
o mele,mtg,  Co, g Lo

is exact (Hint: Choose an orthonormal basis for E such that ¢ is an

element of the dual orthonormal basis for E').

jQ'P

’



10.

7. Continuing with the assumptions of question 6, verify that
a) L(XPE,R) =~ PE' *A"E'a A" PE, 05 p < n.

b) The diagram

L(NE,R) s  Ne'eA" P

l‘%)' 1“%
LATERY 2 A"E'eA™ Pl

commutes, 0 < p S n.

(Part b) amounts to saying that the sequence of question 6 is "self-dual").

§2. Calculus on differential manifolds.

In this section we review that portion of calculus on manifolds
that does not depend on a choice of Riemannian metric. Proofs and
further details may be found in Kobayashi and Nomizu [1] and Abraham
and Marsden [1]. For the theory of vector bundles we refer in addition
to the books by Husmoller [1] and Lang [1] and to the basic theory
outlined in §5 of Chapter 1.

Throughout this section M will denote a C differential manifold
of dimension m. For this section only, C¥(M) will denote the space of

real valued C¥ functions on M, 0 S r S =,

Let E be a smooth (that is, Cm) vector bundle on M. For r 2 0
we let c'(E) denote the vector space of cF sections of E and C:(E)

denote the space of CT sections with compact support.
Notation and examples (see also §5 of Chapter 1).

1. We let R=M x R denote the trivial real line bundle over M.
Notice that C*(R) = CT(M).

2. We letI M and I'M respectively denote the tangent and cotangent
bundles of M.

As described in §5 of Chapter 1, we may form the dual bundle E'
of a vector bundle E and tensor products of tensor, exterior and

symmetric powers of E and E'. The contraction operations described in



11.

§1 of this chapter all extend to these bundles and their sections. By
way of example, there is a natural vector bundle map trace: E®E' + R
erx,¢er;,xeM. If S
and ¢ are C" sections of E and E' respectively, we may define the cr
section trace(Se®¢) of R by: trace(S®¢)(x) = trace(S(x) @¢(x)). In

the sequel we use the same notation for contractions on vector bundles

defined by: trace(ex0¢x) = <e ,0,.>, €

and their sections that we developed in the previous section for vector

spaces.

Differential forms. A section of the bundle A’9'M is called a
differential p-form (on M). For p 2 0 we have the operation
d: Cm(/‘P.‘f'M) - Cm(/\Pﬂ' 'M) of exterior differentiation and the corres-
ponding sequence

M sy —4s .. (NP S L

Properties of exterior differentiation.
1. d i8 R -linear.
2. d°a=o.
3. d(OAT) = doas + (-1)PBAdL, ¢ ¢ (AT, ¢ e CO(ATY).
4. If £€CT(M), x € M, then df(x) = T,f € L(TM,R) =M.

S. If £: M+ N is C and ¢ € CT(A'N), then d(£*¢) = f*dd (f*
denotes the operation of pull-back of differential forms induced by f).

6. In local coordinates, if ¢ = z ¢i 1 dxi '\.../\dxi .
1511<...<1p5m 1°°°7p "1 P
where the coefficients ¢i 1 are C* functions, then
1°0+1p
)
d¢ = Y 1) /3%, dx, Adx, A...Adx
§%1 1s4;<.0o<t sm S RREL SR N R 51 i

We say that a p-form ¢ is closed if dp = 0 and that it is exact
if, in addition, there exists a (p-1l)-form { such that df = ¢. A
closed form need not be exact though by Poincaré's lemma it is always
locally exact. That is, if ¢ is an exact p-form on M and x € M we may
find an open neighbourhood U of x (typically contractible) and a
(p-1)-form ¢ defined on U such that df = ¢|U.
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The bundles APJ‘M are zero bundles for p > m and /'\"I‘M is a
real line bundle. We say that M is orientable if A'M is isomorphic
to the trivial line bundle R. If M is orientable we have a natural
R-linear map IH: Cg()\mJ’M) + R called integration. If M has boundary
M (necessarily orientable) then we have Stokes' theorem:

[ ¢ = [ ¢, ¢ e cL(A Ly |
M M ¢

For p 2 0, we define the pth. de Rham cohomology group,
HSR(M,R), of M to be the quotient vector space

KD LR) = (Rer d: CT(APg'M) » CCAP o my) /ac” (A ),

Clearly, HgR(M,lR) =0, p>m, It is true, though by no means trivial,
that if M is compact the de Rham cohomology groups are all finite
dimensional vector spaces. It is also true that integration defines a
dual pairing between HgR(M,lR) and the singular homology group Hp(H,lR),
p 2 0. As a consequence, H;R(M,R) is isomorphic to HP(M,IR), p 2 0.
We give a proof of this isomorphism in Chapter 6, §3.

Vector fields and Lie derivatives. We say that a map
§: C°(M) » C°(M) 1s a derivation if & is R -linear and

§(fg) = (8f)g + £(8g),

for all f,g € Cm(M). We denote the set of derivations of Cm(M) by D(M).

We have a natural map of CQUM) into D(M), denoted X J— L. defined by

x9
Lyf = Cydf, f e (M) .

Lyf is called the Lie derivative of f with respect to X. It is a basic
result that this map of me) into D(M) is a bijection. This allows
us to think of vector fields as (lst. order) linear partial differential

00
operators on C (M).

Given X,Y € Cm(ﬂ{), the map LXLY —LYLx is a derivation of C®(M)

and so there exists a vector field Z such that LXLY - LYLX = Lz. In the

sequel we call Z the Lie bracket of X and Y and denote it by [X,Y].
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Properties of the Lie bracket.
1. [, ] is R-bilinear.
2. [X,Y) = -[Y,X], X,Y € C (M)

3. [X,[Y,21] + (Y,[2,X]] + [Z,[X,Y]] = O for all X,Y,Z ¢ C (M)
(Jacobi identity).

4, 1f f: M+ N is a C” diffeomorphism then [£,X,f,Y] = f,[X,Y],
for all X,Y € C“QIM) (f, is the operation of push-forward of vector
fields induced by f).

We may give an invariant definition of exterior differentiation
in terms of Lie derivatives and brackets. Suppose that ¢ is a

differential p-form and xo....,xp are vector fields on M then

i A
<do,on...Axp> - 150 (-1) Lx1<¢,on...AxiA...Axp>

+ (-1)“1<¢,[x1,xj].x0;\...A;(

Auso AX; Ao AX >,
0si<j P

i 3

For each X ¢ CBCIM) define Lx: c”crn) + C° M) by LxY = [X,Y].
We refer to LyY as the Lie derivative of Y with respect to X. We now

o

extend the operator Ly to C sections of arbitrary finite tensor and
exterior products of #M and I'M. We first define Ly on sections of
J'M. Suppose ¢ € C*('M) then Lyé will be the differential l-form
characterised by

Ly<o,Y> = <Lyd,Y> + <¢,Ly¥>, for all Y e o).

It 18 quite straightforward, using the basic properties of Lie
derivatives, to check that this relation does indeed define Lx¢ as

a section of I'M. We shall extend Lx to arbitrary tensor and exterior
powers by requiring that it is a derivation. Thus, for p 2 0, we
define Ly: C"AYM) » C*(Abru) by

Lx(xl"“"‘xp) - 151 xlA...ALxxiA... Axp
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and Ly: C7(7m) » ¢ (Ao'm) by

Ly(dyA... A@P) - ):P LLRER ALydy A ... A¢p ,
i=1
where x1 and ¢i are C vector fields and l-forms on M respectively.
Suppose that V and W are vector bundles which are finite tensor
products of tensor and exterior powers of M and 9'M and that we have
defined Ly on C sections of V and W. We define Ly: C (VeW) + C°(VoW)
by

Ly(S8T) = L,S8T +S8LT, S ¢ c®(V), T e CO(W).

Again it is not hard to verify that Lx is well defined. Since we have
already defined I..x on sections of exterior powers of FM and I'M the
above construction allows us to extend Lx to arbitrary finite tensor

products of tensor and exterior powers of M and I'M.

A most important property of Lie derivatives is that they
commute with contractions. Indeed this property is built into the
definition of Lie differentiation on differential l-forms for we have

LyC(ooY) = C(LgdaY) + C(oaL,Y),

¢ € C°(I'M), X,Y ¢ C“(ﬂl). We leave it to the reader to verify that
Lie derivatives commute with any of the contraction operations we have

so far defined on tensor products of M and I'M.
Exercises.
1. Let X € C°@M), ¢ ¢ CQ(IPS"M), f e C°(M). Verify the identities
1) Lyé = dCyb + Cydo

11) L6 = fLyo + df A Cyb.

2. Let A CT(s'MosM). Define A: COM) + C*@H) by A(X) = (3(XoA).
Show that we can extend K, as a derivation, to sections of any finite
tensor product of tensor and exterior powers of FM and I'M in such a
way that A is the zero operator on CQ(M) and ccmmutes with contractions.

Show further that if Q is any operator defined on sections of tensor
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products of FM and 7'M that is a derivation and commutes with
contractions then there exist unique X ¢ CwV'M) and A € Cm(f'Mo?'M)
such that Q = Lx + A.

3. Verify the following local forms for the Lie derivative and Lie

bracket
n
i of
a) f= X" = .
" 121 axy
n 3y 3x
wooonte ) gty gy
i=1 h] h|

§3. Complexification.

Throughout this section tensor products over R and € will be

denoted by ®,, and ®, respectively. We use similar notation for

R C
exterior and symmetric powers. Omission of a subscript will generally

indicate a product over ¢ unless the contrary is clearly indicated.

Definition 5.3.1. Let E be a real vector space. The
complexification cE of E 1s the vector space E@R(I.

Properties of complexification.

1. cE has the natural structure of a complex vector space with

scalar multiplication defined by c(ec’,R d) = e®_cd, e ¢ E, c,d ¢ C.

R

2. dima(cE) - dim.mE.

3. CE has a natural splitting EROEI into real and imaginary parts

defined by ER - (eoml: e ¢ E}; El - {eomiz e ¢ E}.

4. The operation of complexification commutes with tensor, exterior
and symmetric products. For example, 1if p 20, c(@&ﬁ) %QP(CE) (as

complex vector spaces).

5. C(E') N Lm(E,(I). This isomorphism is defined by mapping Mmc
to cd. In the sequel we set c(!:Z') = CE’.

6. The dual pairing ExE' + R complexifies to the dual pairing
cE cl:‘.' + ¢. On generators, this pairing is defined by
<e0mc,¢0md> = cd<¢p,e>, c,d € ¢, ¢ ¢ E', e ¢ E. Using this dual
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pairing we identify the dual spaces of QPCB, /PCE with @ch', /PCE'
respectively. We should stress that we shall always use this dual
pairing in the sequel.

One of the main reasons that we introduce complexification is

so that we can define conjugation.

Definition 5.3.2. The map S: cE * (E defined by
S(edpc) = eo c, ecE, c €€, is called conjugation. We usually
write S(X) = X, X ¢ E.

Properties of conjugation.
1. Si = -1S (conjugation is a conjugate complex linear map).

2, Let Xe E. ThenX = X iffX ¢ E,: X = -X 41ff X ¢ E

c R

I
3. Conjugation commutes with the operations of tensor, exterior
and symmetric products. For example, conjugation on /{)CE may be
defined as /?S or, equivalently, as conjugation on c(/\,': E). In
particular, notice that if X} a... AX) e A E, then
- 5 T p
XIA...AXP xlA...Axp(/\cE.
4. Using the natural isomorphism between cE' and LR (E,C), we may
regard conjugation as conjugation of functions. That is, if f ¢ _E,

we define f ¢ CE' by £(e) = f(e), e ¢ E.

c

5. Conjugation commutes with the dual pairing CB x cE' + ¢ and so

for all X ¢ cE, P € cE' we have

<X,p> = <X,¢> .
6. The conjugate of a map A ¢ L¢(cE’cF) is given by A = S.A.S.

Finally, we remark that if ¢ is an element of some finite
tensor product of tensor and exterior powers of cE, CE' then ¢ is
said to be real if ¢ = §. By property 2 above this is clearly equivalent
to the existence of a real tensor y such that ¢ = Lyoml.

Exercises.

1. Let X e cE- Show that X + X 1s real, X -X is imaginary (that
is, a point of E,).
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2, Let A € IlR (E,F) and cA = Aem
ification of A. Show that detc(cA) - detn (A).

le LG(CE.CF) denote the complex-

3. Let A€ LG(CE,CF). Show that detc(K) - detc(A).

54. Complex linear algebra.

This section, which may be regarded as a synthesis of §§1,3,
summarizes the main results of complex linear algebra that we need in
the sequel. Again we defer any consideration of inner product

structures.

Suppose that E is a complex vector space. We let E* denote
the complex dual space LG(E'G) of E. The theory of contractions that
we described in §1 immediately extends to (complex) tensor products
of tensor, exterior and symmetric powers of E and E*. We continue to
use the notation developed in §1.

Definition 5.4.1. (See also §5, Chapter 1). Let E be a real
vector space. An endomorphism J of E is said to define a complex

gtructure on E 1if Jz

= -I.

If E has complex structure J then E may be given the structure
of a complex vector space if we define (a +ib)e = a +bJ(e), a,b ¢ R,
e ¢ E. In particular, dimRE must be even., Conversely, if E is a
complex vector space we may define a complex structure J on E by

j(e) = ie, e € E.

Definition 5.4.2. 1If E is a vector space with complex
structure J, we define E, the conjugate of E, to be the vector space E
with complex structure -J.

Remark. Suppose E 18 a complex vector space and that X € E has
coordinates (zl,....zn) relative to some (complex) basis B of E. Then
B 18 also a baais of E and the coordinates of X ¢ E are (21,...,2n).

In this sense, taking the conjugate of a complex vector space corres-
ponda to taking conjugates of the coordinates. Shortly, we shall use
the device of complexification to give a "coordinate-free" version of

this important operation. Indeed, much of the formalism we now develop
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is directed towards obtaining a satisfactory definition of conjugation
for complex vector spaces that does not depend on a choice of coordinate

system and can be extended to complex manifolds.
Properties of complex structures and conjugate spaces.

1. Let E, F be vector spaces with complex structures JE' JF
respectively. A map A € Lm (E,F) is complex linear iff A.JE = Jp-A.
The space LG(E.F) has the natural complex structure J defined by
J(A) = A.Jp = Jp.A. Ve may define two distinet complex structures J1»
J2 on L]R (E,F) by Jl(A) = A.JE; JZ(A) = JF.A

From now on assume that E is8 a vector space with complex

structure J.

2. The complex structure on E* is defined by J(¢) = ¢.J = 19,
¢ € E*,

3. E* ~ E* as complex vector spaces. The isomorphism is defined
by mapping ¢eE* (=L(E,L)) to & ¢ E*, where ¢(e) = ¢(e), e ¢ E. Notice
that the complex structure on E* is defined by J(¢) = ¢.(-J) = 1¢.

In particular, E* is the space of conjugate complex linear maps on E.

4. The operation of taking the conjugate space commutes with the
operations of taking dual, tensor, exterior and symmetric powers.

For example ®PE =~ @'E as complex vector spaces.

As we described in §3, we may give cE the structure of a complex
vector space. Clearly the complexification of J, which we continue
to denote by J, also defines a complex structure on cE. As we shall
soon see these two complex structures on  E are different. In the
sequel, we always give cE the complex vector space structure induced

from ¢ and never that induced from J.
Define P,P: cE + E by
P = W(I-1J), F = MH(I+1J).
Clearly, P, P are complementary projections: Pz = P, !-’2 = P and

P+P = I. We set E = P(CE), Ea= i(cE). Then E, E are complementary
complex subspaces of E and so E = EoE. Observe that J|E = +1i,
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JIE = =4 and S(E) = £ (hence the notation). We have natural isomorphisms
§: E+ E; 3: E » E defined by

je) = kH(ed®l-Jeodi); J(e) = L(ed®@l+Jeoi) .

Hence we see that CE ~ EoE. Notice that if we regard this isomorphism
as an identification then E, E become complementary complex subspaces
of CE in such a way that the complex structure on CE restricts to the

complex structure J on E and the conjugate complex structure -J on E.

Let us now examine how conjugation fits into this framework.

We have the commutative diagram

E—3  >Felf = E

B

E——3— >Fof = E

We see that the identity map I: E » E. which is associated to taking
conjugates of coordinates, corresponds to the invariantly defined

operation of conjugation on cE.
Properties of complexified linear maps.

1. Suppose E, F are complex vector spaces and A ¢ IWR(E'F)' Let
cA = Aonll € Lm(cE'cF) denote the complexification of A, We say that
CA respects the splittings E@E, FoF of cEv (F (or just splits) if
A= A1°A2’ where Alz E~F, Ay E » F. We have the useful result
that A splits iff A e Lm(E.F). Moreover, 1f A splits, A2 = 11. In
the sequel, 1if A ¢ LG(E,F) we write A = A @A and observe that the

following diagrams commute

—————1————>E<!E

E—d EeE E
lA ch=AeK lK ch-AoK
F——-3 5Fef F—1dJ >FeF .

The map A: E »

F 1s defined to be equal to A on the underlying real
vector spaces of

i
E and F.
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2. If A € L]R (E,F), then detc(cA) = clet:,IR (A) (Exercise 2, §3).
Hence if 2 e L (E,F)i detR(A) = detg{A el) = detcA detGA - detcA detEA
= |det¢A| = |det¢A| , since A = jAj *. 1In particular, the real
determinant of a complex linear map is always positive (this implies,
for example, the orientability of complex manifolds).

Next we turn to dual spaces. Recall from §3 that cE' may be
identified with L]R (E,2). As described above we have complementary
projection maps P,P: cE' -+ cE' defined by

P(9) = M(0-16,J), P(9) =%(6+10.3), ¢ € E'.

Observe that for all ¢ € CE', P(¢) € E*, P(¢) € EX. Hence we have
the splitting
L] = v
CE E* @EX* .
This splitting amounts to saying that every complex valued R -linear

form on E has a unique decomposition as a sum of a complex linear and

conjugate complex linear form.

Let us see how conjugation fits into this picture. The
conjugation map S: E* - E*, defined by taking conjugates of linear
forms, is the restriction to E* of the conjugate operator S: CE' -+ CE'

defined in §3. Hence we have the commutative diagram

EX ——J—-———)E*QE* = CE'

<t Is

= - 3 -
s B —— 1 sprofr = cE'

E*

The maps j, 5 are just inclusion maps. Notice that the conjugation
map S: E* » E* factors through E* and compare with the previous

diagram that we gave for conjugation on CE.

As described in §3, the dual pairing ExE' + R complexifiea
to the dual pairing < , >: cE xcE' + C. We now investigate how this
pairing behaves with respect to the factors E, E of CE and E*, E*

L
of CE .
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Proposition 5.4.3. The dual pairing < , >: E xcE' + ¢ induces
1. The zero pairing between E and E*.
I. The zero pairing between E and E*.

2. A dual pairing of E and E*.

NI

A dual pairing of E and E*.

Moreover, the dual pairings between E, E* and E, E* are given
explicitly by

<j(e),¢> = ¢(e), e € E, ¢ ¢ E*
<Je),¥> = Y(e), e e E, ¥ e E*,

Proof. It is enough to verify statements 1, 2 as i. 2 follow
by conjugation. Suppose X € E, ¢ € E*x. Then there exist e € E,
T € E' such that X = j(e) = 4(ed@1-Jeodi), ¢ = j(e) = M(zo01+5.J@di),
Now <¢,X> = ¥(<g,e> - 12<C,J2e> + 1<g,Je> - 1<g,Je>) = 0, proving 1.
1f instead ¢ e¢ E*, there exists § ¢ E' such that ¢ = %(;el1-5,J81)
and computing we find that

<¢,X> = 3(Z(e) -15(Je)) = d(e) . a

We now use Proposition 5.4.3 to examine how complex linear maps
and their duals behave under complexification and conjugation. If
A: E » F is C-linear, we have induced ¢-linear maps A: E - F,
Ak: F* o EXx, A*: F* o E* defined by

1. A(e) = A(e), e ¢ E (where, as real vector spaces, E = E).
2. <A* (f*),e> = f*(A(e)), e ¢ E, f* ¢ F*,
3. <A*(F*),e> = T*(A(e)), e ¢ E, F* ¢ F*,

Since A is assumed C-linear, A = Aok, CA' = A* @ A* and we

have, by Proposition 5.4.3, the following alternative characterizations
of A, A%, A%,
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1 k=375,
2! <A* (f*) ,e> = <A(e),f*>, e ¢ E, f* ¢ F*,

3! <A*(T*),e> = <A(e),f*>, e ¢ E, f* ¢ Fx,

The pairings here are all induced from the dual pairing of E and E'.
Observe how the definitions are now much more natural. In particular,
3' is just the conjugate of 2'. This naturality, that allows us to
commute conjugation with other operations such as contraction or tensor
product, i8 one of the main advantages of working with the complex-
ifications of E and E'.

Next we look at the exterior algebras of E and cE'. By

Theorem 5.1.5 we have the canonical isomorphisms
wNE + @ ANEoNE
r+s=p

us /\ch‘ + D ANE*eNE* .
r+s8=p

e set N'%(E) = u L(NEe A°E): AP%(E') = u L (NE* 0 A°E*), r,s 2 0.

For p 2 0 we therefore have the direct sum decomposition
AE = @ A%m®; RE = @© ACEH.
c c
r+g=p r+s=p
An element of A'%(E) (resp. NS(E")) 1s called a complex (r,s)-vector
(resp. a complex (r,s)-form).
Properties of the exterior algebras of cE and CE'.

For properties 1 and 2 below we suppose dima(E) =m.

1. /{’S(E) = 0 if either r > m or 8 > m. Similarly for forms.

2. /3mcE = /?’m(E). Similarly for forms.

3. /{'S(E) - /?’r(E), r,s8 2 0. A necessary condition for a complex

(r,s)-vector to be real is r = s. Similarly for forms.

4. I£X e N'%(E), Y e AUV(E) then xaY ¢ AT (E), r,8,u,v 2 0.
Similarly for forms.
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5. The dual pairing /PCE x/PcE' + C restricts to a dual pairing
/{’S(E) x/f’s(E') + @ which is given on generators by

<x1A...AxrAYiA...AY;,olA...AorAwiA...Aw§>

= XA Axt,cpl/\... A¢r><YiA AY;,wiA...mp-so,

wherexjeE,Y-i-eE,tbjeE*.erﬁ*,lsjsr,lsiss. 1f
r+s = u+v but r # u, then the induced pairing /{’S(E) XIS’V(E') +C

is always zero (both properties follow from Proposition 5.4.3).

6. If A e Lg(E,F), then XA RE- /PCF induces maps
ﬁ{'a(A): /{'8(E) -+ ﬁf’s(F), r+s = p. Similarly for forms.

7. If r 2 u, 8 2 v, we have the contraction operation
C: A%E® e A"V ED - ATVHV(E)

obtained as the restriction of the contraction berween /{+SCE and
/P+VCE. Similar remarks hold for the other contraction operations

defined in §1.

We conclude this section by looking at bases for the spaces

we have been considering.

Suppose B = {el,...,em) is a complex basis for E. Then B is
a complex basis for E and Bp = {el,Jel,...,em,Jem) is a real basis for

E. The dual real basis Bﬁ for E' is given by

Bé = {ei,(Jel)',...,e;,(Jem)'}
= (ei,-Jei,...,e;,-Je;), since (Jej)' = -Je'.

h]

We now define bases B, B, B*, B* for E, E, E*, E* respectively. Set
B = : = .
{fj e E f_1 j(ej), 1<jsm

B = {fch: fj-j(ej),lstm)
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B* = {fg € E*: £f = ej -1(Jej)' = e5-+1Je5, 1<3sm}

B* = (f§ € Bx: £2 = 1s3sm}.

J e3+1(Jej)' = e' -1Je!

k] b
Notice that f, = f-, ?? = ft, 1 S j Sm. Hence our notation for the
bases B, B and B*, B* (such pairs of bases are called self-conjugate).

We see also that B and B* are dual bases (for the pairing < , >) since

<fj,f*> = ke, -1Je

i g~ 1iJeyrey-1Qe

P el

<fj,fﬁ> = 0, J¢#k.
Similarly, B and B* are dual bases.

With respect to the self-conjugate basis that we have construct-

ed on CE, every X € cE may be written uniquely in the form

m -
X = 3 zjfj + ¥V 23
31 =

—
ey

e C., The coordinates (zl,...,zm,zl,...,zm) are called

(&)

where zj, z

self-conjugate coordinates on E.

Suppose that F is another complex vector space with complex
basis C and associated bases C, C. C*, C* as described above for the
basis B of E. Let A € LG(E,F) have matrix [a1
bases B and C. Then

j] with respect to the

(KD = (d,,0; [A*] = (2, 0; (AD = (&), 1;TAD = (a0 (AD = (3],

where the matrices are computed relative to the appropriate bases

agssociated to B and C.

Finally suppose that X € /{’S(E), ¢ € /{’S(E'). In coordinates

we may write X and ¢ uniquely in the form

.o

x = I xMegss 6= ]

b _<fred
1,3 1,0 Y

1"J°

where the summations are over all r-tuples I = (11,...,1r) satisfying

1ls 1 <... <1r S m and s-tuples J = (jl....,js) satisfying
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lg jl <o <;|s < m and we have used the abbreviated notations f_f= and

1]
f;fg for £, A...Af A f and f* AL, Af* AFX AL AfY

Ao ASf
1 1'r 3.1 Is 1'1 1: -11 8
respectively.

Notice that we use subscripts for coordinates of forms and

superscripts for coordinates of vectors.
Examples.

1. Suppose X and ¢ are as above. Then

rs T oeRkek
(-1) I{J ;3 £35 -
’

A similar formula holds for X.

2. Same assumptions on X and ¢. We have
< = ] xes.
I,J

Exercises.

1. Show that CE* (-(CE)*) is naturally isomorphic to CE' and
deduce that E' ~ Exof*,

2. Let E be a real vector space, F a complex vector space. Show
that there is a natural operation of conjugation S: CEO¢F > CE OGF
that is the identity if E = R and conjugation on cE if F = Q.

3. Show that the set of complex structures on m2m is in bijective
correspondence with GL(2m,R ) /GL(m,C) (Here we take the standard complex
structure on ]Rzm and regard GL(m,C) as a subgroup of GL(2m,R)).

§5., Generalities on complex vector bundles.

In this section we collect together a number of definitions and
elementary facts about complex and holomorphic vector bundles. The
reader should be familiar with §5, Chapter 1.
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Complexification. Let E —P» M be a (smooth) real vector
bundle over the differential manifold M. The complexification cE of E
is defined to be the complex vector bundle Egmg_ over M. Notice that
if E has transition functions ¢1j: Uij + GL(m,R) then cE has transit-
j + GL(m,C), where c¢ij(x) = oij
We remark that all the results on complexification described in §3

ion functions c¢1j: U1 (x)oml, xelU

i3°
extend immediately to vector bundles and their sections. In particular,
we have a conjugation operator S defined on cE and C“(CB) and this
operator commutes with tensor product operations and duals in the

manner outlined in §3.

Complex structures. Let E B> M be a (smooth) real vector
bundle over the differential manifold M. A complex structure J on E is
a vector bundle morphism J: E + E satisfying J2 = -I. Equivalently, a
complex structure on E is a ¢” section J of the vector bundle L(E,E)
over M such that J()r.)2 - -I|Ex for all x ¢ M (see exercise 6, §5,
Chapter 1). If E is a complex vector bundle over M then E has a complex
structure defined by scalar multiplication by i in the fibres of E.
Conversely, it is not hard to show that if E has a complex structure
then E has the structure of a complex vector bundle (the proof uses
Exercise 3, §4, together with the fact that the quotient map
GL(2m,R) + GL(2m,R )/GL(m,¢) admits local sections).

Definition 5.5.1. Let M be a differential manifold. A
complex structure J onJM is called an almost complex structure on M.

We refer to M as an almost complex manifold.

Example 1. Let M be a complex manifold with atlas
{(Ui.¢1): i e I}. The transifi.on functions foilthe tangent bundle M
of M are given by ¢ij - D(¢1¢.1 )¢j. Since ¢1¢j is biholomorphic,
¢1j: Uij + GL(m,g) for all 1,j ¢ I. Henced M has the structure of a
complex vector bundle and so M has the structure of an almost complex
manifold.

Holomorphic and anti-holomorphic vector bundles. For the

remainder of this section we shall suppose that M is a complex manifold.

Definition 5.5.2. An m-dimensional holomorphic vector bundle
E over M consists of a complex manifold E and holomorphic map p: E + M
together with a family ¢i: E|Ui + Uy xC™ of biholomorphic trivialisations
of E.
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Remarks .

1. A holomorphic vector bundle necesssrily has the structure of a

complex vector bundle.

2. An m-dimensional holomorphic vector bundle may equivalently be

described by specifying a family 011: U,, +GL(m,C) of transition

1j
functions such that ¢1j is holomorphic for sll 1, j. 1It is clesr from
the transition function description of holomorphic vector bundles that
if E 18 a holomorphic vector bundle then so is E* and any finite tensor

product of tensor, exterior and symmetric powers of E snd E¥*.

3. We denote the space of holomorphic sections of E by Q(M,E) or
just Q(E), if M is implicit from the context.

Example 2. Let M be a complex manifold. Then#M has the

structure of a holomorphic vector bundle.

Suppose that E is a holomorphic vector bundle with transition
functions¢ij= Uij + GL(G™) (=GL(m,C)). 1If E hss complex structure J we
let E denote the complex vector bundle over M with complex structure ~J.

The trsnsition functions for E are given by

. - gm
011- Uij GL(C") .

where 51j(x) - 011

(x), x € Uij' as real linear msps of G™, Obviously
the $1j are no longer holomorphic msps. Instead they are anti-holomorphtiec.
That 1is, in a local holomorphic coordinate system on M we have

3«5“/32k =0, 15 ks dim(M).

In the sequel we shall say that a complex vector bundle E over M
is anti-holomorphic 1f the transition functions for E are anti-holomorphic
or, equivslently, if E 1s s holomorphic vector bundle.

Remark. The dual of an anti-holomorphic vector bundle is snti-

holomorphic as are finite tensor, exterior snd symmetric products.
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§6. Tangent and cotangent bundles of a complex manifold.

In this section we show how the theory of 84 can be applied to
the study of the tangent and cotangent bundles of a complex manifold.
Our results provide the framework we need for the construction of the
global Cauchy-Riemann operators on an arbitrary complex manifold that

we carry out in §7.

We start this section by briefly indicating how the theory
outlined in §2 for differential manifolds can be "complexified".

Let M be a differential manifold with tangent bundle M. We
call the complex vector bundles E"M and .{'M the complex tangent and
complex cotangent bundles of M respectively. Sections of the bundle
/\2.9")1 are called complex differential p-forms on M, p 2 0. Exterior
differentiation complexifies to give an operator on complex differential
forms which we shall continue to denote by d. We note that this operator
on complex differential forms obeys all the properties described in §3,
or rather their complexified analogues, and in addition is a real

operator:
a6 = 43, e (X ITM, p20.

The Lie bracket complexifies to give a Lie bracket on Cw(g'M)
defined by

[x1+iY1,x2+iY2] = [Xl,xz] - [YloYz] _1([Y1’x2] + [xl’Yz])’

where }(1,}(2,Y1,Y2 € C°@M). Similarly the Lie derivative complexifies
to give a derivation L, of the full tensor algebra of JIM for all

Z € C°°(L7'M). We remark that the Lie bracket and derivative that we
have constructed are real operators, that is they commute with

conjugation. For example, if X,Y € C°°(L7M) we have [X,Y] = [X,Y].

Suppose now that M is an m-dimensional complex manifold with
-1
atlas {(Ui,wi). i€ I}. We let ¢1j = D(cbiobj )¢j. Uij + GL(m,Q) denote
the transition functions for the tangent bundledM of M and J denote the
complex structure ongM. Applying the theory of §4, we see that the
, where

transition function c¢1j of JM splits as a sum 6, 051

A 3
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eU: Uij -*GL((Im) and 51_1: Uij -*GL(Cm) (here we have identified C(Im
with ¢™ o™ uaing the mapa j, j deacribed in 84), Clearly eij and .éij
are the transition functions for complex vector bundles on M which we
shall denote by TM and ™ respectively. By our construction we see
that TM and TM are complementary complex subbundles of{H and ao we
have g‘H = TM®@TM. Moreover J = +f on TM, J = -1 on T and S(TM) = T™

(Hence the "bar" notation).

We have the natural incluaion map j: Gm +> C(Im ~ Gmoém and

m m
projection P: CG + ¢, Since eij j¢1j
linear the © are holomorphic and ao TM has the structure of a

1)

holomorphic vector bundle. Indeed the map j induces a holomorphic

P and j and P are complex

vector bundle isomorphism betweendM and TM. Similarly TM has the
structure of an anti-holomorphic vector bundle. We call TM the
holomorphic tangent bundle of M and ™ the anti-holomorphic tangent
bundle of M. We reserve these terms for the appropriate aubbundles of
g‘M and continue to refer toJM as the real tangent bundle of M even

though it is isomorphic to TM.

Taking the standard basis of ¢™ we can eaaily compute the

matrices of the transition functions 6 To simplify notation,

. 13 913‘
set ¢ = ¢1¢J , 0= eij and let (zl,...,zm) denote the coordinate
syatem on Uij given by the chart (Uj,¢j). We follow the basis notat-

ion given in §4. The qth. column of [6(z)] is the vector

e(z)(fq) 0(2)(%(eqol-Jeqoi)

- l:(‘:D@z(eqcl) - 1(:!)¢2(Jeq e1))
= ls(2>¢/2>xq- 13¢/3yq) - 3¢/azq .

Hence (0] = [3¢P/azq]. Conjugating we have [§] = [a$p/a§q] = [3¢p7azq].
Notice that our expresaion for [9] given an alternative verification

that TM haa the structure of a holomorphic vector bundle.

Turning now to dual bundlea we let TM* and TM* denote the
complex dual and conjugate complex dual bundles of M respectively.
We have the direct sum decomposition cf'M = TM* @ TM* and, as above,

TM* i3 a holomorphic vector bundle, TM* an anti-holomorphic vector
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bundle. We call TM* and TM* the holomorphic cotangent and anti-
holomorphic cotangent bundles of M reapectively. The tranaition

functiona q;ij for 9"“ are given by q;ij ‘»ji and ao the tranaition

functiona for TM* and TM* are given by 93‘1 and e;i
local coordinates, the matrices of 93‘ and 63‘1 are the tranapose and

conjugate transpose of the matrix [9133 respectively.

reapectively. 1In

Next we consider the exiaterior algebras of g?‘l and CI'M.
Working with transition functions we may conatruct for r,a > O,
r+s8 = p, subbundlea /\r’a(H) and /\r’s(M)' of /\peﬂ{ and /\pdfn
reapectively such that

Rgn = @ NP Agm = @ Am'.
r+a=p r+a=p
We call /\r’a(M) (reap. /\r’s(M)') the bundle of (r,a)-vectora (reap.
(r,8)-forms) on M. If a = 0, we aee that /\t’o(H) ~ /\rTM and
/\r’o(M)' ns A'TM*. In particular, these bundles are holomorphic vector
bundles on M, r > 0.

Notation. For r,a,p 2 0, we let cP(M) (resp. C (M)) denote the
space of c” sectiona of /\p I'M (resp. /\Pg'H) (From now on we ahall
never need to refer to CP functions on M unleas p = », when we write
CQ(H)). We let Cr’s(H) (reap. Cr (M)) denote the apace of C* sections
of /\r'B(M)' (resp. /\r'B(M)). We let QP(H) (reap. Q (M)) denote the
apace of holomorphic sections of /\P' (M)' (resp. N"O(M)).

All the theory deacribed in §4 extenda immediately to the
exterior algebras of c.fM and CTM and the correaponding apacea of
gsections. In particular for r,a > 0 we have a conjugation operator
S: /\r’a(M)' +> /\s'r(H)' and induced conjugation operator
S: Cr’B(M) »> Ca’r(H) (similarly for (r,a)-vectors). We uaually write
S(¢) = ¢, for ¢ a complex form or vector. Notice that a neceaaary

condition for an (r,s)-form ¢ to be real - ¢ = ¢ - is that r = a.

Suppoae that N is a complex manifold and f: M + N is a
holomorphic map with tangent map Jt: M +IN. The complexification
JE of I aplita as & sun TE@TE: TMOTM » TN @TN. Similarly the
complexification J'f of the cotangent map J*f: 9'N +F'M splita as a
sum Tf* @ Tf*: TN* @ TN* + TM* @ TM*, Consequently, for r,a 2 0, the

tangent and cotangent maps of f induce vector bundle mapa
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APB(E): A3 (M) » ATPB(N) and ATP3(E) ' ATE(N)T - AT S )

We now give a local description of complex (r,s)-vectors and

forms in terms of the self-conjugate bsses given in §4,

Suppose ¢ € Cr’s(M) and (V,Z) 1is a chart on M. Then {,$ is an
(r,8)-form on the open subset L (V) of ¢™. Set U = (V) and n = T,@).
As 18 conventional, we denote the standard basis of Gm' by
{dxl,dyl,.‘.,dxm,dym}. For 1 € j < m we set dz:l = dxj + 1dyj € (Im*,
dEJ = dxy - 1dy; e . Then {dzj,dij: 1< 3<m is the self-
conjugate basis of Gm*oém* described in 84. Moreover, if we think of
dzj, dEj as defining sections of TGQ*; iﬁm* respe:tively, {dz ; 1<jsm}
and {dEJ: 1l < j < m} give bases for C (TU*) and C (TU*) over C (U)

respectively. Hence we may write n € c™ 8 w) uniquely in the form
n = J n.5dzdz<,
1,3 1J IJ

where € C7(U) and the summation over the r-tuples I and s~tuples

n.=
J 18 as de;gribed in §4., Next we turn to the local form for complex
(r,8)-vectors. Identifying (complex) vector fields with (complex)
derivations, it is clear that if we set B/sz = %(B/ij - iB/ByJ) and
3/32j - k(a/axj + 13/3yj) then {a/azj: 1<3j<m and {3/3531 1<j<sm}
form bases over C°(U) for C*(TU) and C*(TU) respectively. Hence we may
write X ¢ CI'S(U) uniquely in the form

h|

X = XJ X! a/azl 3/823 ,

I,

where XIJ e C®(U) and we again follow the notational conventions of §4.

Remark. Much of what we have done in this section goes over
to almost complex manifolds. Thus if M is sn almost complex
manifold with almost complex structure J we may define ™ = Kernel(J-1)
and ™ = Kernel(J+1). TM and TM are complementary complex subbundles
of érM though now, of course, we can no longer say that TM is a
holomorphic vector bundle as we sre not assuming that M has a complex
structure. In the next section we shall discuss the important question
of when an almost complex structure on M is associated to a complex

structure on M.
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§7. Calculus on a complex manifold.

Suppose that M is an almost complex manifold with complex
structure J on M. We start this section by investigating the relation-

ships, i1f any, between J and exterior differentiation and Lie brackets.

Definition 5.7.1. The torsion of the almost complex structure
J on M is the tensor field N ¢ C°°(/\2.7"M09'M) characterised by

<N,XAY> = [JX,JY] - [X,Y] - J[X,JY] - J[JX,Y],

where X,Y € C“("M).
Remarks .

1. As usual the reader should verify, using exercise 6, §5, Chapter
1, that N is a well-defined tensor field on M.

2. In the literature N is usually defined as a section of
QZ.TMW and differs from the torsion field as we have defined it by

a factor of 4.

3. In the sequel we usually abbreviate an expression like <N,XAY>
to N(XAY) or just N(X,Y). Note that the pairing is that between

exterior and not tensor powers.

The significance of the torsion of an almost complex structure

may be gauged from

Proposition 5.7.2. The spaces C°(TM), C®(TM) are Lie
subalgebras of C”(g'M) if and only if the torsion tensor field N

vanishes.

Proof. Let U,V ¢ C°(TM). We may write U, V uniquely in the
form U = X-1JX, V = Y -1JY, X,Y ¢ C°(IM). Computing we see that
{u,v] = A + 1B, where A = [X,Y] - [JX,JY], B = [JX,Y] + [X,JY]. Now
A+ 1B ¢ C°(TM) iff JB = A. That 1s, iff J[JX,Y] + J(X,JY] =[X,Y] - [JX,JY]
But this is precisely the condition that the torsion field N vanishes.
Conjugating we see that if one of C”(TM), C®(TM) is a Lie subalgebra
of Cm(g'M) so is the other. 0
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Proposition 5.7.3. The torsion of the almost complex

gtructure assoicated to a complex manifold vanishes.

Proof. Choose local analytic coordinates and compute N on
the basis vector fields 3/axj. 3/3y,, 1 s 3,k <m. The Lie bracket of
any pair of these constant fields vanishes and since J(a/axj) - alayj,
we see that N must vanish identically.

Remark. It is true, by a fundamental theorem of Newlander
and Nirenberg, that if the torsion of an almost complex structure on M
vanishes then the almost complex structure is associated to a complex
structure on M. We say that the almost complex structure is integrable.
This result is not difficult to prove if M is real analytic (a proof
may be found in Kobayashi and Nomizu [2; Appendix 8]). For the general
case we refer to Hormander [1]. Although we shall not make any
systematic study of almost complex manifolds in these notes we should
point out that there are topological obstructions on a differential
manifold for it to admit an almost complex structure and on an almost
complex manifold for it to admit an integrable complex structure.
Specifically, a theorem of Hirzebruch and Hopf [1] gives necessary
and sufficient conditions on a compact, oriented 4-manifold for it to
admit an almost complex structure. These conditions imply, for example,
that SA does not admit an almost complex structure and so cannot be
given the structure of a complex manifold. Borel and Serre [1] prove
that S” can admit an almost complex structure only if n = 2,4,6., Of
course, if n = 2 we obtain the Riemann sphere. This leaves the case
n=6., It is well known that S6 admits an almost complex structure
(see Kobayashi and Nomizu [2; page 139]) which is, however, not

integrable. As yet it is unknown whether 86

admits an integrable
almost complex structure. Results of Van der Ven [1] show that there
are topological obstructions to the existence of integrable almost
complex structures on an almost complex manifold. For a useful survey

of results on 4-manifolds see Pittie [1].

Theorem 5.7.4. Let M be a complex manifold. Then for r,s 2 0

we have

d(Cr’s(M)) c cr+1,s(M) + cr,s+1(M).
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Proof. Let ¢ € CP(M) and xo,...,xp € C”(g'M). Then, as in
§2, we have

<dd,Xg A ... Axp> - 150 (-1)1Lx1<¢,xo'~ D e

+ I ni¥

<¢,[X,X,1A AveiAX, A K
0si<j 17 %o

i 3

AcooAX >,
|4

Now suppose p = r+8, ¢ is an (r,s)-form and each xj lies in C®(TM) or
o —

C (TM). By Proposition 5.7.2 we see that if more than (r+1) of the
X;'s 11e in C"(TM) or more than (s+1) of the X,'s lie in C7(TH) then
the right hand side of the above expression vanishes (remember that
the pairings between TM, TM* and ™, TM* are zero). 0

Remark. If M is an almost complex manifold it is easily
seen that d(CT*5(M)) c cP*2 971 M) 4cPq(yy 4 cPr Iy 4P 142y,
A straightforward calculaion shows that the result of Theorem 5.7.4
holds if and only if the torsion of the almost complex structure
vanishes. See Kobayashi and Nomizu [2] for further details.

It follows from Theorem 5.7.4 that if M is a complex manifold
we can define for r,s 2 0 operatorsd: Cr’B(M) > Cr+1’s(M) and
5: Cr’s(M) -> Cr’8+1(M) characterised by the identity d = 3 + 3. We
remark also that for p 2 0, 3, 3 induce operators 3,3: CP(M) » Cp+1(M)
satisfying d = 9 + 3.

Properties of the operators 3, 3.

2

1. 32 =0,35% =0, 33 + 33 =0.

2, 9, J are conjugate operators: 3 = 36, ¢ € CP(M).
3. 3(dAL) = 0A &+ (-1)POAdL, & € CP(M), T e CI(M). Similarly
for §.

4. If £f: M+ N is holomorphic and ¢ € Cp(N) then f*3¢ = I (f*).
Similarly for 3.

5. In local coordinates, suppose ¢ = 2 ¢13d21dzj' Then
1,J

m m
3= ) 1 93¢ -/3z,dz, dz_dz< and 3¢ = ] 9¢.-/3z, dz,dz.dz=.
je1 1,0 WO 3:2-1 ;g WO
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6. For p 2 0, we have QP(M) = Kernel 9: CP’O(M) -+ CP’I(M). In
particular, A(M) = Kernmel 3: C™(M) + Co’l(M).

Properties 1-4 follow immediately from the corresponding
properties of d together with Theorem 5.7.4. For property 5 we use
the local identity df = aflazj dzj + Bf/BEJdij, f a C* function.
Property 6 is immediate from Property 5.

We see from Properties 5 and 6 that the operator 3 is our
required generalisation and globalization of the Cauchy-Riemann
equationsdiscussed in Chapter 2. We observe that for p > 0 we have

the sequences

Py > PO —>cPrlay 2> ... 25cP Py + 0.

Since 32 = 0, we may for p,q > 0 define the vector spaces
u;'q(n) = (Kernel 3: cP*3q) » cP 9 1qmy) /5P 9 ().

These spaces measure the degree of unsolvability of our generalised
Cauchy-Riemann equations. Like the de Rham groups they turn out to be
important invariants though now they reflect analytic rather than
topological properties of a complex manifold. We return to these matters

in the next Chapter.

Example 1. Let a ¢ RP(M), B ¢ R9(M). Then aaB ¢ QP19 (M).
Indeed by properties 3 and 6 we have d(x AB) = dxAB + (-l)paAsB = 0.
Hence A B ¢ QM(M).

We conclude this section by extending 3 to holomorphic vector
bundle valued differential forms. Suppose that E is a holomorphic
vector bundle on M. For r,s 2 0, we let /f'B(M,E)' denote the complex
vector bundle /{’S(M)'QE and Cr’s(M,E) denote the space of c” sections
of /f’s(M)'oE. We claim that for r,s > 0,3 extends to a map

r,s+l

55’ c*'8(M,E) + C (M,E).

To construct 3E we work locally. Suppose that OU: EIU » UxGQP is a

trivialisation of E over the open subset U of M and that we are given
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a complex analytic caordinate system on U. Given 8 ¢ Cr's(M,E), set

sy = s|U. We have

8y = U dzIdzJ, a=1,...,p,

1 -
where 8 = (eU,...,ag): U » /E’B(Gm)' oCP. We define aEs by

B a = - - =
(3gs)y 21 12 Bsu IJ/azj dzjdz dz3, a = 1,...,p.
We must check that our definition of BEs does not depend on our choices
of trivialisation of E. Suppose that ev: ElV >V xCP 18 another
trivialisation of E and let eUV denote the transition function
associated to the trivialisations OU and Ov. On U n V we have

8y = evvsv.

Since er is analytic we see that aeuv/aij =0, j=1,...,m, and 80
(SEG)U - Buv(sgs)v. Hence 588 is a well defined section of /{’S+I(M,E)ﬂ

If E is an anti-holomorphic vector bundle on M we may similarly
define an operator aE: Cr’s(M,E) > Cr+1’8(M,E), r,8 2 0. Indeed,
using conjugation we may define 3E¢ = (5;;3, [ 3 Cr’s(M,E), where
conjugation is induced from the conjugation map
S: N*SME)' » f2'T(M,E)' (see Exercise 2, §4).

In the sequel we usually drop the subscripts from BE and SE
and just write 3 and 3.

Properties of the operators 3, 3 on bundle valued forms. We shall
only state properties for 5; those for 3 follow by conjugation.

In what follows we assume that E is a holomorphic vector bundle on M.

1. 3 =0.

2. Kernel 3: CP’O(M,E) > CP’I(M,E) is the space QP(M,E) of
holomorphic sections of /\p'l'M*OE. In particular,
Kernel 3: C®(E) + CO'I(M,E) is the space Q(M,E) of holomorphic sections
of E.

3. 3 commutes with contractions on finite tensor products of

tensor, exterior and symmetric powers of E and E*, For example, if
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6 e M, PEQ NTE*) and p > q, C(30) = 3CO) € "2, A7), Here
C 1s induced from the contraction C: APE® AIE* - A%,

4, 3 commutes with contractions between the bundles /f’s(n)' and
exterior powers of the holomorphic tangent bundle of M. That is, if
6 e C%,PT) and r 2 p, we have 3(CO) = C(3¢) € C P T ().

These properties all follow immediately from our local description
of 3.

As a consequence of property 1 we have for p 2 0 the sequences

aPM,E) > P Om,E) -5 PP lm,E) 2> ... 25 cP*™(M,E) + 0

and the corresponding vector spaces

WEIM,E) = (Rernel 5: cP*Iu,E) + P W ou,e)) /3P I )
Examples.
2. Let E be a holomorphic vector bundle and J ¢ C“(L(E.E)) denote the

complex structure on E. Then 3J = 0 and so J is a holomorphic section of
L(E,E). That 3J = 0 is a consequence of the fact that locally J is a
constant section. For the same reason 3I = 0, where I is the identity

section.

3. Let X e CT(TM), Y € C"(TM). Then [X,Y] = C43Y - C,3X. We shall
give an invariant proof of this identity using property 4 above. Let
f e C”(H), then

L[X.Y]f = <d<df,Y>,X> - <d<df,X>,Y>
= <3<3f,Y>,X> - <3<If,X>,Y>
= (C,C,03f - C,C,80F) + (<BF,CuaY> - <3f,C,3%>),
- <df,cx3Y - CY§X>, proving our assertion.
Exercises.

1. Starting with the local description of 3 (property 5), prove
directly that if f is a holomorphic map then s(f*O) = £%(3¢) (property 4).
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Deduce that 3 may be defined invariantly on complex differential forms

on a complex manifold.

2, Let E be a holomorphic vector bundle on M. Suppose 8 € Cw(E),
f e C‘”(M). Prove d(fs) = 3f ®s + fds. More generally, 1if ¢ ¢ Ct’s(M),

prove that 3(¢®s) = 3085 + (-1)”’%/\53.

§8, The Dolbeault-Grothendieck Lemma.

This section ia devoted to the proof of an important result that
plays the same rdle in the theory of complex manifolds as the Poincaré

lemma does in the cohomology of differential manifolds.

Theorem 5.8.1. (Dolbeault-Grothendieck lemma). Let D be an
open polydisc in ¢" and suppose that f ¢ Cp’q+l(D) satisfies 3f = 0
(p,q 2 0). Then if W is any relatively compact open subset of D there
exists u ¢ Cp’q(w) such that 3u = f on W.

Proof. The theorem is proved inductively. The kth. step of
the induction is to prove the theorem true if f is independent of

dzk+1,...,
is obtained for k = n.

din. The theorem is trivially true when k = 0 and the theorem

Let us assume that the theorem has been proved for k - 1 and that

f does not involve d§k+1,...,din. We may write f uniquely in the form

f = dEkAg+h,

where g € Cp’q(D), h ¢ Cp’q+1(D) and g and h are independent of
dEk,...,dEn. Set g = I{J 313d21d23' Since f = 0, we have
’

agljlazj =0, >k eeo A

We now find a solution CIE of the equation

3613/ sz 813 °

n

To do this suppose D = || Dj’ Dj c @, and choose ¢ € C (D) such that
i=1 _

¢(zk) = 1 on a neighbourhood W' of W. Define
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-1 -1 -
Glj(z) = (2mi) IQ (t'zk) ¢(t)813(21’--°’zk_1vtszk+1s°0ﬂzn)dtdt

- -2t I

-1 -
o t ¢(zk-t)g13(zl,...,zk‘l,t,zk+1,...,zn)dtdt.

The second expression for 613 implies that GI} € CQ(D). Theorem Al.6

- > - A - Z -
implies that 3GIJ/32k = g5 on W' and, by (A), that BGIJ/BZJ 0, j > k.

Set G = IEJ GdezIdzj. Then on W' we have 3G = dzk Ag + hl’ where h1 is
’ -

independent of dik,...,dzn. Hence, on W', h —hl = f - 3G is independent

of dEk,...,dEn. Since 3(h -h;) = 0, we may apply the inductive

hypothesis to find v ¢ CP*3(W) such that 3v = £ - 3G on W. Setting

u=v+g, we have du = f on W. ]

Remark. It is easy to see, using bump functions, that we may
construct u € Cp'q(D) satisfying 3u = f on W.

Theorem 5.8.1 is sufficient for the development of cohomology
theory in Chapter 6. However, we shall now prove a stronger version of
the Dolbeault-Grothendieck Lemma and obtain a particular case of a result
that holds on arbitrary Stein manifolds and to which we shall return in
Chapter 11,

Theorem 5.8.2. Let D be an open, not necessarily relatively
9*1(p) satisfies 3f = 0.
Then there exists u € Cp'q(D) such that 3u = f, Here we assume p,q 2 O.

compact, polydisc in ¢" and suppose f ¢ cP

Proof. We divide the proof into two cases: q = 0, q 2 1.

Case 1. q = 0. Choose a sequence Dj' j 21, of relatively
compact open polydiscs in ¢" which have the same centres as D and which

satisfy:

A, D, <D,,,, J21and B. U D
i FISEE

I1f u ZuldzI € C°'°(D) and K ¢ D, we define lulK m§XIu1|K‘

= D,

We shall construct inductively a sequence uj € CP‘O(D) satisfying
1. §uj = f on some open neighbourhood of Bj’ j 21,
2. <23, 521,

'%ﬂ'%bi
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The existence of uy follows from Theorem 5.8.1. Assume that we have

constructed uj,...,u, satisfying the conditions above. By Theorem 5.8.1,
there exists ui+1 € Cp’o(D) such that §uﬂ+1 = f on an open neighbourhood
of Dk+1° e
of ﬁk since 3(ui+1‘-uk) = f -f = 0 on an open neighbourhood of ﬁk‘

The difference u' - is holomorphic on an open neighbourhood
Y1 T Y

Hence, if we take Taylor's expansion of the coefficients of uL+1 -y, at
the centre of D, we may find P ¢ QP(D), with polynomial coefficients,
such that

&
|“1'c+1"’k“’|ﬁk <2 .

Now we define u - P and see that Upesl satisfies the required

= \J
K+l - Ykl
conditions and so the inductive step is completed.

The sequence ("k) has coefficients which converge uniformly on

each ﬁk and so (“k) converges to a continuous (p,0)-form, u. Now
]

u=u + J (u
1t

441 - uy arz not holomorphic on any given Dy. Hence, by Corollary 2.1.8,

u must be C on each Dk and so u ¢ Cp’O(D). Finally, on each Dk’

341 -uj) and only finitely many of the differences

u

u=w +a, g € A(Dk), and so Ju = 5uk = f on each D.. Hence Ju=f

on D.

Case 2. q 2 1. We choose a sequence Dj of polydiscs in ¢"
satisfying the conditions of Case 1. We shall construct inductively a
sequence uj € Cp'q(D) such that

1. f = 5uj on some open neighbourhood of Bj’ j=21.

2. 1Dy =uy, 321,

Y441

The existence of uy follows from Theorem 5.8.1. Suppose we have
constructed Upseeerty satisfying the conditions above. By Theorem 5.8.1,

there exists ui+1 € Cp’q(D) such that 5uL+1 = f on some open neighbour-

hood of Dk+1’ Now 5(“L+1"“k) = 0 on some open neighbourhood of ﬁk and

so, since q 2 1, snother application of Theorem 5.8.1 implies that there

exists ¢ ¢ Cp’q-l(D) such that ui+1 -y = 5¢ on some open neighbourhood
W of D. Define U ™ uﬂ+1 ~ 3. Then, since 3° = 0, we see that
5uk+1 =- §uﬁ+1 - f-on an open neighbourhood of ﬁk+1 and

uk+1|Dk = ui+1 - 9 = u . This completes the inductive step and we now

define u ¢ CP»9(D) by uIDj = uy, 3 21. Clearly du = f. 0
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Remarks. Both Theorems 5.8.1 and 5.8.2 hold for C™-valued

forms. The proofs are identical to those given above.

Corollary 5.8.3. Every open polydisc in C" is a Cousin I, II, A
and B domain. In particular, C" is a Cousin I, II, A and B domain.

Proof. Propositions 2.7.1 and 2.7.3. 0

Corollary 5.8.4. Every holomorphic line bundle on an open
polydisc in c" is holomorphically trivial.

Proof. Let ¢1j: uij + 0% be the transition functions for the
holomorphic line bundle L on the polydisc D. Then ¢1j'¢jk = ¢ik for all
i, j, k and so {¢ij} is the data for a Cousin B problem on D. By
Corollary 5.8.3, there exists ay € A*(Ui) such that Oij - aj/ai. But,

by 85 of Chapter 1, this implies that L is holomorphically trivial. 0
Exercises.

1. Suppose p,q 2 0 and m > 1. Show that if f ¢ CZ'q+1(¢m) and 3f = 0
then there exists u ¢ Cg'q(Gm) such that Ju = £,

2. Show that the open Euclidean disc E(z;r) in C" is a Cousin I, II,
A and B domain (Use Exercise 1, §1, Chapter 2).

§9, Holomorphic vector bundles on compact complex manifolds.

In this section we present a number of important examples of
holomorphic vector bundles on compact complex manifolds. We shall pay
particular attention to the spaces of holomorphic sections of such
bundles which, by the theory of §7, may be represented as the kernel of
the J-operator.

We start by proving an elementary special case of a rather

general finiteness theorem that we return to in Chapter 7.

Theorem 5.9.1. Let E be a holomorphic vector bundle on the
compact complex manifold M. Then dimcﬂ(E) < ™,

Proof. Suppose that we are given a finite open cover
{Ui: i=1,...,r} of M such that over each Uy, E has a holomorphic
trivialisation 6,: E|U, -+ U, x CP, p = dim(E). Suppose also that {Vi}
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is an open refinement of the cover {Ui} such that for all {, V1 is a
relatively compact subset of Ui' Given s € Q(E), we let 8yt Vi +aP

denote the local representative of s on Vi.

1£ 1 | denotes the standard Euclidean norm on GP, we may define
a norm | | on Q(E) by

r

Isl = § 1s,1, » 8 € QE).
=1 i Vi

Observe that |si| < @ gince Vi is compact. We shall prove that the

v
closed unit ball Biin the normed vector space ((E),| |) is compact. This
implies that (Q(E),| |) is locally compact and hence finite dimensional by
F. Riesz' theorem (for an elementary proof of Riesz' theorem see Field

[1; page 54]). Suppose then that (sj) is a sequence in B. Given 1,

1 s i S r, we have corresponding sequences (si) c A(Vi,Gp) of local
representatives. By our definition of | |, it is clear that for all {1

we have
Isi(2)1 51, zev, 321

In particular the sequence (s{) is bounded on 61 and so by Montel's
theorem (Theorem 2.1.9) we may find a subsequence (t(l)j) of (sj) which
converges uniformly on vy Proceeding inducitvely, suppose that we
have constructed a subsequence (t(k)j) of (sj) which converges
uniformly on Viu... qu. Applying Montel's theorem we may find a
subsequence (t(k+1)j) of (t(k)j) which converges uniformly on Vk+1 and
hence uniformly on V1 Usos ka+1. Hence we may find a subsequence
(tj) of (sj) which converges uniformly on Vl U...uV, =M. Hence B is

sequentially compact and therefore compact. 0
Holomorphic vector bundles on projective space.

To each point £ € P™(Q) is naturally associated a complex line
in cn+1. This suggests that we should be able to construct a complex
line bundle over P"(g) whose fibre at the point £ ¢ P™(Q) is the line
L c ¢n+1’ We start this subsection by constructing this ''tautological’

line bundle (see also Exercise 2, §3, Chapter 4).
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Let L c P™(C) x ¢n+l denote the set {(£,z): z ¢ £}. The
projection on P"(¢) induces a projection m: L » P"(C). Recalling §7 of
Chapter 4, we see that L is ¢n+1 blown up at the origin and so, in
particular, L has the structure of a complex manifold of dimension n + 1
and m 18 holomorphic. We claim that L has the natural structure of a
holomorphic line bundle over Pn(c). For this we have only to observe

that the maps 6,: L|U; + U, x C defined by
ei((ZO""'zn)'(EO"'"an)) = ((20"-"2“)031)

define holomorphic trivialisations for L. The corresponding transition

j: Uij + GL(1,C) = ¢° are given by

functions 9i

Oij(zo,...,zn) = 21/2j.
We call the holomorphic line bundle L the tautological or universal
line bundle on P"(g).

We let H denote the dual bundle L* of L. For reasons that will
soon become clear we call H the hyperplane section bundle of P“(a). For
p e Z we define

W* = ®PH, p20

= @PL,pso0.

Note that the transition functions ep

P P . P
14 for H' are given by 8 (zj/zi) .

1)

The next proposition gives an indication of the important rdle
that the hyperplane section bundle plays in projective algebraic
geometry and also indicates an important bridge that exists between

complex analysis and algebra.

Proposition 5.9.2. For p 2 0, Q(HP) 1s canonically isomorphic

(p)(¢n+1 n+l

to the space P ) of homogeneous polynomials of degree p on (€ .

For p < O, Q(Hp) congists of the zero section.

Proof. Suppose p 2 0. If s € Q(HP), we let sy: Uy » C denote
the local representatives of s relative to the standard trivialisation
of HP. For 0 < {, jJ s n we have ezsj = 84 and so

sj(zo,...,zn)zg = si(zo....,zn)zg .
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Hence we may define the holomorphic map S: ¢n+1 \{0}+¢a by

s(zo,...,zn) = si(zo,...,zn)zg, zy # 0. Since the s, are homogeneous of
degree zero, S is homogeneous of degree p. By Hartog's theorem, S
extends to ¢n+1 as an analytic function which we continue to denote by S.
Since S is homogeneous of degree p, we see by taking Taylor's series at
the origin of ¢n+1’ that S must be a homogeneous polynomial of degree p.
Hence we have defined a map of Q(HP) 1into P(p)(¢“+1), p20. If

S € P(p)(¢n+1), define s, = S/zg, 1=0,...,n. The s; are the local
representatives of a holomorphic section of HP. Since the maps between
Q(Hp) and P(p)(6n+1) are clearly inverses of one another we have shown
that Q(HP) is canonically isomorphic to P(p)(¢n+1).

We leave the case p < 0 as an exercise for the reader which makes

use of the isomorphism HP oH P = c. 0

As a special case of the proposition we see that if p = 1, sect-
ions of H correspond to linear functionals on ¢n+1. In particular the

zero sets of such sections are hyperplanes in P“(G).

Next we show that there exist natural exact sequences

0—> C — (n+l)H —TP" —0

*
0 —TP" — (n+l)L — € —>0 .

Here (n+l)H denotes the (n+l)-fold direct sum of H; similarly for (n+l)L.
Since the second sequence is the dual of the first it suffices to
construct the first sequence. First, however, we need to prove some

results about holomorphic vector fields on projective space.

Let q: ¢n+1 \{o} + Pn(G) denote the quotient map. Suppose X is

n+l

a vector field on G \ {0} which is homogeneous of degree 1:

X(Av) = AX(v), A € C°, v ¢ ¢+l \{0}. Then q,X is well-defined as a
vector field on Pn(G). Indeed, since q = q.}, qu = Dqu.X, e C°.
Hence (q,X)(a(v)) = Dy (X(v)) = Day X(v), v e €71\ (0}, A ¢ C°,
proving that qu4X is well-defined on P"(C). We define the Euler vector
field E on ¢n+1\ {0} by

n
E(Zgse-er2,) = 120 zg 3/3zy .
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Certainly E 1s homogeneous of degree 1 and so q,E is a well-defined
holomorphic vector field on Pn(G). Since E(2) ¢ Tsz, where L, denotes
the line through z and 0, we see that q4E = 0. Let {so,...,sn} be a
basis of Q(H). Since {so(z),...,sn(z)} spans H, for all z ¢ P01y,

to define a vector bundle morphism (n+l)H -+ " 1t 18 enough to specify
the map on holomorphic sections of (n+l)H. So suppose

(8gs--+»0g) € Q((n+L1)H). We define E(dy,...,0,) € ATP") by

n
Edgs-- o0 )(2) = 1 qu(0,(2)3/32,),
i=0

where we have used the identification between sections of H and linear

functionals on ¢n+1. Now the kernel of § is the image of the map
T: € + (nt+l)H

defined on sections by T(1)(2) = (zo,...,zn), where Zgseer2y denote the
coordinate functionals. In view of the fact that T(l) = q,E, we see that

the "Euler sequence'
0+ ¢ —L» (n+1)H -S> TP" + 0

is exact.

Taking the highest exterior power of the Euler sequence and
using the result of Exercise 5, §1, we see that

/PTP“ ~ /P+1((n+1)H) ~ H“+1.

Taking duals, we deduce that
* - -
Are™ = gL,

In the sequel we call the nth. exterior power of the cotangent
bundle of an n-dimensional complex manifold M the canonical bundle of
M and denote it by K(M). Thus we have shown that K(E" (@) = H-n-l. As
we shall see later the canonical bundle plays a central role in the

theory of compact complex manifolds.
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If X is a closed complex submanifold of Pn(C), we may pull back
(restrict) the hyperplane section bundle of P™(C) to X. We denote the
resulting bundle on X by Hx. We remark that the zero sets of
holomorphic sections of Hy are intersections of X with hyperplanes in
P"(@). We refer to Hy as the hyperplane section bundle of X.

Divisors, holomorphic 1ine bundles and linear systems.

Recall from 86 of Chapter 4 that the group D(M) of divisors on a
complex manifold M is the set of (locally finite) formal sums
I n V , where the n, are integers and the Va are irreducible analytic

[+
aecl
hypersurfaces of M. Here we suppose that M is compact and so we may

assume that A is finite. By Theorem 4.6.11 every divisor on M may be

specified by a Cartier divisor {(Ui,d ): 1€ 1} =

{d € M*(U)): d dJ € A*(U )} and two Cartier divisors {(Ui,d ): 1 € 1}

and {(Vj,ej) je J} determine the same element of D(M) if and only if
-1

diej € A*(U1 an) for all 1 ¢ I, J ¢ J.

Before stating the next proposition we recall from Chapter 1 that
the set HLB(M) of isomorphism classes of holomorphic line bundles on a
complex manifold M has the nctural structure of an Abelian group with
composition defined by tensor product and inverse by dual. As in
Chapter 1, we shall use the abbreviated notations E.F and E—l for EoF
and E* respectively. As usual ¢ will denote the trivial holomorphic line
bundle.

Proposition 5.9.3. There is a canonical group homomorphism

[ J: D(M) » HLB(M)

Proof. Let d = ((Ui’di): 1 ¢ 1} ¢ D(M). We let [d] denote the
holomorphic line bundle on M with tranaition functions
84% Ugy GL(1,8) = ¢° defined by 8y = d;/dy. We must show that [d]
depends only on d and not on our particular representation of d as a
Cartier divisor. Suppose then that {(Ui’di): i € I} also defines the
divisor d. The corresponding transition functions are given by
eij - di/di. But now dildi € A*(Ui) and so, setting a, = dildi’ we
have
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a,b

1843 = Gijaj, 1,j € I.

Hence 913' 915 define isomorphic holomorphic line bundles (see Chapter 1,
§5). The fact that [ ] is a group homomorphism is immediate from our
definition of [ ] using Cartier divisors. 0

Remark. As a consequence of Proposition 5.9.3 we see that if
d,d' ¢ D(M), then [d+d'] = [d](d'] and [d]* = [-d].

Proposition 5.9.4. The sequence

o) 4 oy LI

> HLB (M)

i8 exact.

Proof. Let d = {(Us,d;): 1 ¢ I} ¢ D(M) and suppose that [d] = .

Then there exist ay € A*(Ui) such that a = 83, where 01 = djl_/d‘1 are

1eij )
the transition functions for [d]. Hence 8id1/dj = aJ and so
ady = ajdj on Uijf Therefore we may define m ¢ M*(M) by m|U, = aidi‘
Clearly div(m) = d since div(aidi) - div(di), i ¢ I. Obviously
[div(m)] = ¢ for all m ¢ M*(M) and so we have shown that

div(M*(M)) = Kernell ]. 0

Definition 5.9.5. Let d,d' ¢ D(M). We say that d and d' are
linearly equivalent if d -d' is the divisor of a meromorphic function.
We denote the group of linear equivalence classes of divisors on M by
L(M). Thus L(M) = D(M)/div(M*(M)). Given d ¢ D(D), we let L(d) denote
the set of all divisors on M linearly equivalent to d.

Next we wish to define meromorphic sections of a holomorphic
line bundle. Suppose that E ¢ HLB(M) has transition functions
913’ UiJ +0¢°. We say that a family m € M(Ui), i€ I, defines a
meromorphic section of E if eijmj =my e M(Uij)’ 1,3 € I. We let M(E)
denote the space of meromorphic sections of E and M*(E) denote the space

of non-zero meromorphic sections of E.

Remark. The group law in HLB(M) induces corresponding maps on
spaces of sections. For example, if E ¢ HLB(M) and s ¢ M*(E) has local
representatives s; € M*(Ui)' we may define s-1 € M*(B-l) to be the sect-
ion with local representatives (3-1)1 = szl. This construction defines

an inversion map M*(E) -+ M*(E-l). Similarly if E,F ¢ HLB(M) and
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E,F € HLB(M) and (s,t) € M(E) x M(F) we may define the composition
s.t ¢ M(E.F) by s.t = sot.

Proposition 5.9.6. Let E ¢ HLB(M) and suppose that M*(E) ¥ @.
We have a natural group homomorphism div: M*(E) + D(M) satisfying

[div(s)] = E, 8 ¢ M*(E).

Proof. Let E have transition functions eij: Uij +¢° and
8 ¢ M*(E) have corresponding local representatives 8 € M*(U;). Since

-1
eijsj = 8y, we have ’18j € A*(U,,) and so we may define div(s) to be

1]
the Cartier divisor {(Ui'ai): i € 1}. Clearly div(s) depends only on 8
and not on our particular choice of transition functions for E. It is
immediate from our local description of div(s) that [div(s)] = E.

Finally, div: M*(E) -+ D(M) is obviously a group homomorphism. ]
Remark. We call div(s) the divisor of the section s.

Example 1. Let m e M*(P"(C)). Then deg(div(m)) = O (Example 3,
§6, Chapter 4). Suppose that E is a holomorphic line bundle on P™(e)
and 8,t € M*(E). Since st-l € M*(P™(C)), we see at once that
deg(div(s)) = deg(div(t)). Hence we may define the degree of E, deg(E),
to be the degree of any non-trivial meromorphic section of E. Clearly,
deg: HLB(P™(C)) + Z 1is a homomorphism. See also Proposition 1.5.7.
We shall give another interpretation of the degree map in §3,
Chapter 6.

Proposition 5.9.7. Let d ¢ D(M). Then

1. There exists s8(d) € M*([d]) such that div(s(d)) = d. The
section s(d) is unique up to multiplication by elements of ¢’.

2. div(M*([d])) = L(d). Moreover the map div: M*([d]) + L(d)
induces a bijection of L(d) with M*([d))/ec°.

Proof. The proof of 1 is the same as the proof of Proposition
1.5.4. Let us prove part 2. Suppose that s ¢ M*([d]). Then
[(div(s)] ¥ [d] and so s(d)-ls € M*(M). Therefore, div(s) € L(d).
Conversely, if d' ¢ L(d), there exists m € M*(M) such that d-d' = div(m).
Hence [d] ¥ [d'] and s(d') determines a section of [d] with divisor
d' = d-div(m) € L(d). The remaining assertion of part 2 is immediate
from part 1. 0
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Proposition 5.9.8. A holomorphic line bundle E lies in the
image of [ J: D(M) -+ HLB(M) if and only if E has a non-trivial meromorphic

section.
Proof. Immediate from proposition 5.9.6 and 5.9.7. 0

Remark. Proposition 5.9.8 shows that the study of divisors on M
is closely related to the problem of finding which holomorphic line bundles
on a complex manifold admit non-trivial meromorphic sections. Two
fundamental results that we prove later show that if M is projective or
Stein then every holomorphic vector bundle on M admits a non-trivial
meromorphic section. It must be stressed that an arbitrary complex
manifold of dimension greater than 1 need not have any holomorphic line
bundles which admit meromorphic sections (equivalently, the manifold need

not have any divisors).

Definition 5.9.9. We say that a divisor d = } ny.V, 1s

. oy A
effective or positive if ny 20, a e A. We write d 2 8(

Suppose that d € D(M). We let L(d) denote the vector subspace of
M(M) defined by

me L(d) 1ff d + div(m) 2 0 or m = O,

Proposition 5.9.10. The vector space L(d) is isomorphic to
Q((d]). 1In particular dimhL(d) < ®,

Proof. By Proposition 5.9.7, there exists s e¢ M*([d]) such that
div(s) = d. Let y: M(M) -+ M([d]) denote the map defined by y(m) = s.m,
me M(M). Now div(y(m)) = div(s) + div(m) and so if m € L(d) we see
that div(y(m)) 2 0. That is, Y(m) ¢ Q((d]). The map Yy clearly
restricts to a linear isomorphism between L(d) and Q({d]) with inverse
defined by Y l(m) = s l.m, m € Q((d]). 0

Remarks.

1. It follows from Propesition 5.9.7, part 1, that the isomorphism
between L(d) and Q2({d]) is uniquely determined by d up to scalar
multiplication by elements of c’.
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2, It follows from Proposition 5.9.10 that every non-zero mero-
morphic function on M can be expressed as a quotient of holomorphic
sections of some holomorphic line bundle on M. Indeed, if m e M*(M)
let Pm = min(0,div(m)) denote the polar divisor of m and choose
8 € n(['Pm]) such that div(s) = -Pp. By Proposition 5.9.10 the map
Y—l: Q([—Pm]) + L(-P_) defined by Y-l(t) = t/g is an isomorphism. But
me L(-Pm) and so m can be written as a quotient of holomorphic sections
of the line bundle [-P_J.

Example 2. Let m € M*(P"(C)). Assuming Chow's theorem, we may
write m as a quotient P/Q, where P and Q are homogeneous polynomials of
the same degree. If the common degree of P and Q is d, we see from
Proposition 5.9.2, that m is the quotient of the holomorphic sections
of Hd determined by P and Q.

Given d ¢ D(M), we let E(d) denote the set of all effective
divisors linearly equivalent to d. The map div: Q([d]) + E(d) induces
an isomorphism between E(d) and P(Q({d])). Hence for every divisor d on
M we have natural isomorphisms

E(d) 2 P(L(d)) = P(A([dD)).

A family I of effective divisors on M is called a linear system
of divisore on M if there exists a holomorphic line bundle E on M and a
(projective) linear subspace V of P(Q(E)) such that I = div(V). We
say that I is a complete linear system if I = div(P(2(E))) for some
E ¢ HLB(M).

If £ i8 the linear system of divisors on M corresponding to the
subspace V of P(R(E)), we define the dimension of I, dim(f), to be
dimh(v). We see that if dimc(v) = n, then I is parametrized by Pn(G)
and we may write I = {d,: t ¢ PR (D).

Let d ¢ D(M). If V is a linear subspace of P(R([d])), then
div(V) is a linear system on M. In case V = P(Q([d4])), we see that
dim(L) = dimhﬂ([d])) -1= dimhL(d) - 1 and the linear system equals
E(d). By the remarks above it is clear that linear systems on M
always correspond to a subspace of E(d) for some divisor d on M and that
a linear system is complete if and only if it equals E(d) for some
divisor d on M.
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Suppose [ = (dt: t ¢ P"(¢)} 1s a linear system on M. We define
the bage locus Bz of I to be the analytic set

B - N Id

| .
teP™(C) ¢

Let tg,...,t be linearly independent in P"(C). Then
n
B, = n'atl.

Since I is a linear system, there exists L ¢ HLB(M) and a linear sub-
space V of P((L)) such that I = div(V). Let (30,...,sn} be a basis

for V then we clearly have

n
B, = N H7Ho
3=0
Suppose BZ = @, Then for each x ¢ M, the (n+l)-tuple
(s (X)) e0rs8” (x)) defines a unique point in P™(C). Indeed, if

32""'32 and sj,...,sn are local representations of so,...,sn with

respect to trivialisaiins over U and Uj respectively, we see that
p(x) =8 j(x)s (x), 0spsn, xe¢ Uij’ where 8 € A% (U j) Since
j(x) ¢ 0, (s (x)....,s"(x)) - (sj(x)....,s?(x)) ¢ P"(C). Hence

provided By = d, we have a holomorphic map P: M + P"(C) defined by

P(x) = (so(x).....,sn(x)). X e M.

It i8 of great interest to know whether a given holomorphic line
bundle L on M has "enough' holomorphic sections to determine an
embedding of M in projective space. Notice that if X is a complex
submanifold of Pn(G), Hx denotes the hyperplane section bundle of P“(c)
restricted to X and I denotes the complete linear system corresponding
to Q(Hx), then By = ¢ and the corresponding map P: X + P"(@) is an
embedding onto the submanifold X.

In conclusion, we see that the theory of divisors and mero-
morphic functions on a compact complex manifold is intimately related
with the theory of holomorphic line bundles and their holomorphic and

meromor phic sections. We mention the following basic problems:

1. The existence of non-trivial meromorphic sections of a given
holomorphic line bundle.
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2. Relations between the dimension of the space of holomorphic
sections of a holomorphic line bundle L on M and other invariants of L
and M.

3. Conditions for the existence of sufficiently many holomorphic
gections of a holomorphic line bundle L on M for it to determine an

embedding of M in projective space.

Geometric genus.

Let M be a compact complex manifold of dimension m and let K(M)
denote the canonical bundle /ETM* of M. We define the geometric genus
ps(M) of M to be dimn(Q(K(M))).

The geometric genus is obviously a biholomorphic invariant.

Proposition 5.9.11. The geometric genus is invariant under

blowing ups with non-singular centres.

Proof. Let m: ; + M denote the blow-up of M with centre p and
exceptional variety E. We have an induced map n*: Q(K(M)) -+ Q(K(ﬁ)).
Since 7 restricts to a biholomorphic map between M\ E and M\ {p} we
see by uniqueness of analytic continuation that m* is injective. On the
other hand if ¢ ¢ Q(K(M)), we may define ¢ = (TIM\E),¢ ¢ K(M\ {p}). By
Hartog's theorem, $ extends to a holomorphic section of K(M) which we
denote by m,¢. Clearly m*m,¢d = ¢, ¢ € K(Q(M)) and so m* is a linear
isomorphism. Hence pg(M) = pg(ﬂ). The proof for general non-singular
centres is similar, using the second Riemann removable singularities

theorem (Exercise 5, §2, Chapter 4) and we leave details to the reader. (O

Remark. The proof given for proposition 5.9.11 also shows that
the numbers dimcﬂ(/PTM*), p > 0, are also invariant under blowings up

with non-singular centres.

The geometric genus is in fact a bimeromorphic invariant.
Whilst we shall not define bimeromorphic maps here (see Ueno [1] for
details and references) we point out that bimeromorphic maps are the
complex analytic analogue of the birational maps of algebraic geometry.
Moreover, if two complex analytic surfaces are bimeromorphic then one

is obtained from the other by a finite sequence of blow ups and
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blow downs (see Kodaira [1]). This result is, however, false in
higher dimensions. We refer to Hartshorne [1 ; pages 412-414] for

a discussion of the higher dimensional case and references. Other
bimeromorphic invariants related to the geometric genus are the
plurigenera pr(M) defined by pr(M) - dimbﬂ(erx(n)), r > 0. The proof
that the plurigenera are invariant under blowing ups is similar to that
of Proposition 5.9.11.

Holomorphic 1ine bundles on complex tori and theta functions.

We conclude this section by indicating the role of holomorphic
line bundles and their sections in the study of meromorphic functions
on complex tori. For further details, proofs and references the reader
may consult Cornalba [1], Griffiths and Harris [1], Swinnerton-Dyer (1]
and Weil (1].

Let T = ¢"/A be an n-dimensional complex torus with period
lattice A and m: ¢" + T denote the quotient map. If L is a holomorphic
line bundle on T then m*L is a holomorphic line bundle on ¢" (As usual,
m*L denotes the pull-back of the bundle L by m - see the exercises at
the end of §5, Chapter 1), By Corollary 5.8.4, every holomorphic line
bundle on C" is holomorphically trivial and so WAL = ¢ =¢" xg.

Fixing an isomorphism of m*L with ¢, we may regard L as the quotient of
C" x C under the identifications

(z,v) ~ (z-+A,fx(z)v), Zz € Gn, vel X €A,
where the functions fA e A*(C™ satisfy the relations
E(z+WE (2) = £, (2), z ¢ ¢®, Ape A eel(A)

A (holomorphic) section of L corresponds to a G-valued (holomorphic)
function 6 on C" which satisfies the functional equation

8(z+1) = £,(2)6(2), z ¢ C", X € A.
Such functions are called theta functions (relative to the family fk)'

The quotient of any two non-zero theta functions defines a A-periodic

meromorphic function on " and hence a meromorphic function on T.
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Conversely, by Remark 2 following Proposition 5.9.10, every meromorphic
function on T may be represented as the quotient of two theta functions
(associated to the same family f)‘). The study of meromorphic functions
on T may therefore be reduced to the study of theta functions on cn.

In fact for n > 1, this approach to the theory of meromorphic functions
on complex tori is much more effective than any direct attempt to
construct meromorphic functions as we did in case n = 1 with the

Weierstrass p-function and its derivative.

Suppose that o, 8 are isomorphiem of w*L with ¢. Then there
exists ¢ € A*(C™) such that B = ¢.a. If a, B correspond to the families
{f)‘: X e A}, {SA: XA € A} respectively, then it is easily verified that
f)‘ and 8, are related by

8(2) = $(z+No() L (2), z € %, A € A

By suitable choice of ¢ we might hope to put the functions f)‘ into a

"standard" form. This amounts to obtaining a classification of HLB(T).

Example 3. The trivial line bundle on T is defined by the family
f)‘ 21, e A. Given ¢ ¢ Ax@E"), we may write ¢ = exp(f), for some
f ¢ AG"). The family g)‘(z) = exp(f(z+)) - £(2)) also defines the trivial
line bundle on T. Since¢(z+)) = gx(z)¢(z), we see that ¢ is a theta
function for this family. Any theta function of this type is called a
trivial theta function by virtue of the fact that it corresponds to a
constant (non-zero) section of the trivial holomorphic 1line bundle on T.
Of special interest to us will be the case when f(z) = az2 +bz +c,a,b,ceC.
We have g)‘(z) = exp(2az + z)\2 + b)) and the corresponding trivial theta
function is exp(az2 + bz +¢).

If L 18 a holomorphic line bundle on T it is natural to try to
define L by functions f)‘ where f)‘(z) = exp F (2,\) and F(z,)\) is
affine linear in z. Suppose L is defined by a family of functions of
this type. The relations (A) impose conditions on the F(z,)\) and,
multiplying by suitable non-zero analytic functions, it is not hard to
show that the f)‘ can be put in the form

fx(z) = m(A)exp(TH(z,A) + MTH(A,N)) ,
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where H is an Hermitian form whose imaginary part E is integer valued on
AxAandm: A+ S!ce satisfies m(A)m(y) = m(A+p)exp(miE(A,p)) for
all A\,u € A,

We denote the line bundle on T corresponding to H and m by
L(H,m). By a theorem of Apell and Humbert every holomorphic line bundle
on T is isomorphic to a line bundle of the form L(H,m). Moreover,
L(Hl’ml) = L(Hz,mz) 1ff H) = H, and m; = my. The proof of this result
may be found in the references. Here we only remark that L(Hl.ml) and

L(Hz,mz) are isomorphic as complex line bundles 1iff H = Hy.

A holomorphic section of L(H,m) corresponds to a theta function

6 which satisfies the functional equation
8(z+2) = m(\)exp(mH(z,)) + YdtH(A,)N))0(2) .

Example 4. (The Weierstrass o-function). We follow the
notation and assumptions of §4 of Chapter 4. Thus we assume n = 1 and
let p (z) denote the Weierstrass elliptic function associated to the
lattice L generated by {ml,mz}. Integrating p we obtain the Weierstrass
zeta function

t@ =zl -G et - wt s w?)
(the prime denotes that the sum is over non-zero elements of L).
t(z+w) - £(z) is constant, not necessarily zero, for all w ¢ L and we
define

n= t(z +w) - g(2); n, = C(z-+m2) - z(2) .e..(B)

As in the proof of part 3 of Theorem 4.4.2, the integral of { round a
period parallelogram for L equals 2ni = Wi, = wony (Legendre's
relation).

Exponentiating the integral of [ we obtain a (single valued)

analytic function called the Weierstrass o-function. We have

z -1
o(z) = exp(log z + JO (T (t) -t ")de)

2
= 2T (B exp(- 2+ #)]
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Exponentiating the integrals of the relations (B) above, substituting
z = -dq,, g, and using the fact that o is an odd function which does
not vanish at Hnl, &nz, we find that

a(z+w) = (-1)"o(z)exp(n(z +w)),

where w = nlwl + nzwz, ns= nln1 + n2n2, n=nn, + ny + n, and ny,n, € Z.
Hence 0 is a theta function on G corresponding to the family
{gw € A*(@): w ¢ L} defined by

8,(2) = (-1)"exp(n(z +3w)), w € L.

However, the functions 8, are not in the standard form that we gave above.
Recall from §4 of Chapter 4 that the lattice L has Riemann form defined
by A(y,z) = S—llm(yi). where S = Im(mlﬁz). Associated to A we have the
hermitian form H defined by H(y,z) = yz/S. The imaginary part of H
equals A and is integer valued on L xL. We now define

Qu(z) = (—l)nexp(ﬂH(z,m) + MmH(w,w)), w € L.

Set a = (Zml)-l(s-lmf)1 - nl) and let Bo(z) denote the trivial theta
function exp(azz). The reader may verify, using Legendre's relation,
that if we define G(z) = 85(2)a(z), then G(z+w) = fw(z)a(z). Hence
we have put the Weierstrass o-function in standard form. Set T = GC/L.
Because the holomorphic line bundle on T associated to the family fw
actually generates HLB(T) we are able to give a particularly simple
description of meromorphic functions on T. Thus if

n n
d = 2 N2y € D(T), deg(d) = 0 and 2 n2 = e, ve may define
k=1 k=1

. n
. - ;Ul_"(z'a")nk' where T(a) = 7 k= 1,...n, and ] oo = 0.

It i8 easily verified that my is L-elliptic and defines a meromorphic
function on T with divisor d.

The theory of theta functions of more than 1 complex variable
is highly developed and we conclude by mentioning just two important
results:
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1. If there exists L(H,m) e€ HLB(T) such that H is positive definite
(that is, H is associated to a Riemann form), then the complete linear

system defined by L(3H,m) = L(H.m)3 gives a projective embedding of T.

2. The dimension of Q(L(H,m)) can be computed and is equal to /det E,
vhere E is the imaginary part of H and the determinant is computed
relative to any basis of the period lattice of T.

Exercises.

1. Let 8 be a meromorphic section of the holomorphic line bundle E.
Define the zero and pole sets Z(s), P(8) of s and show that s is
holomorphic if and only if P(x) = @.

2. Let p 2 1 and I denote the complete linear system on P (D)
corresponding to Q(Hp). Show that

a) dim(z) = (™P) - 1.
n
b) The base locus of I is empty.

¢) I deternmines an embedding of P*(C) in PM(C), N = dim(Z)
(The "p-tuple embedding").

(In case n = 2, p = 2, we obtain an embedding of P2(¢) in PS(G). The
corresponding surface in PS(C) is called the Veronese surface).

3. Let E be a holomorphic line bundle on the complex manifold M.
Show that, as vector spaces, M(E) = M(M), provided that E admits a

non-trivial meromorphic section.

4. Suppose V is a smooth analytic hypersurface in the compact complex
manifold M (that is, V is a closed submanifold of M of codimension 1).
Let Ny = (™|V)/TV denote the normal bundle of V. Show that
a) NG ~ {v e TMY|V: v 18 zero on TV*},
b) Ng & [-v]Iv.
c) K(V) ¥ (RM)olVD IV .
(Hints: For b), show that the local defining equations for V determine

a non-zero holomorphic section of N¢o[v]|v; for c), use the exact
sequence 0 -+ Ng + TMk|V + TV* + 0 and exercise 5, §1).
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5. Suppose that fk € A*(@™), A € A, define the holomorphic line

bundle L on C"/A. Show that f;‘l. f)‘, fx-l respectively define the
complex line bundles L*, L, T* on ¢"/A.

6. Let A be a lattice in C" and H be an hermitian form whose imag-
inary part is integer valued on A xA. Show that L(H,1) is a holomorphic
line bundle on C"/A. Now set L = L(H,1). Show that a function
8: C" + ¢ determines a section of Lx@L* if and only if for all z ¢ c"

we have
0(z+)) = exp(-m(2Re(H(z,A)) + H(A,A))0(z), X € A,

Deduce that ¢(z) = exp(-mH(z,z)) determines a nowhere vanishing smooth
gectian of L*xoL* (We may think of ¢ as determining a canonical
hermitian form on L = L(H,1)).

§10. Pseudoconvexivity and Stein manifolds.

In this section we shall show how some of the pseudoconvexivity
definitions wediscussed in Chapter 2 may be generalised to arbitrary

non-compact complex manifolds.

We start with a few remarks about Hermitian forms on an
m-dimensional complex vector space E. Recall that H: E xE + ¢ is said

to be an Hemitian form if

1. H(x,y) = H(y,x), X,y € E.

2. H(axl +bx2.y) - aH(xl,y) + bH(xZ,y), a,beC, X),Xp,y € E.
We say that H is positive definite if, in additionm,

3. H(x,x) >0, x ¢ 0.

Conditions 1 and 2 imply that H is8 conjugate complex linear in the
second variable. Consequently, an Hermitian form may be regarded as a
complex bilinear map H: ExE + ¢ satisfying the conjugate symmetry
condition 1. Since the space of complex bilinear maps of E xE to €
is naturally isomorphic to E* @ E*, we may also regard H as lying in

E*®E*. Thus, relative to a basis of E, we may write H in coordinates as
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m
H o= § h, :dz, @dzZ,.
i
1,4=1 1J b
The conjugate symmetry condition amounts to requiring that the matrix
[hﬂ] be Hermitian. That is, hij - th’ l1si, Jsm,

Next observe that E* aE* = /\l'l(E'). If we regard H as lying in
/\l'l(E'), the conjugate symmetry condition amounts to requiring that

H = -H (conjugate the form 2"13"21 Adzj).

Finally note that since E* @ E* = L(E,E*), we may regard H as an

element of L(E,E*). 1In this case conjugate symmetry amounts to H = H*,

Recall that if we chcose a complex basis for E and let H have
matrix [h, -] relative to this basis, then the integers

1)

n(H) = number of negative eigenvalues of [hi:‘l-]’

z(H) = number of zero eigenvalues of [hij]’

p(H) = number of positive eigenvalues of [hﬂ]’

are invariants of H which do not depend on the choice of basis for E.

Definition 5.10.1. Let M be a complex manifold. An Hermitian
form on M 1s a section H of TM* @ TM* such that H(x) is an Hermitian
form on TxM for all x € M.

Remark. We may equivalently define an Hermitian form on M to be
a (1,1)-form H satisfying H = -H.

Definition 5.10.2. Let M be a complex manifold and ¢ € c]2R M) .
The Levi form of ¢ is the (1,1)-form defined by

L(¢) = 233¢.

Since 293¢ = 93¢ = -33¢, we see that L(¢) is an Hermitian form on
M. In local coordinates,
m 2 _ i
L) = § 2 ¢/32,3%, dz @ dz,.
1,3=1
and so L(¢) is an invariant version of the Levi form we discussed in
Chapter 2,
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Suppose now that M is a relatively compact domain in the
m-dimensional complex manifold M and that M has C2 boundary M. We say
that ¢ ¢ C2 (M) 1s a defining function for M if

1. M= {xe M: ¢(x) < O}.
2. aM=¢"1(0.

3. dp # O on IM.

Given a defining function ¢ for M we may define the holomorphic
tangent space rxan to 3M at x by T 3M = {v e T M: dp(x)(v) = 0)}). Set

ToM T_oM

chBM x

It 18 straightforward to verify that ToM is an (m-1)-dimensional complex
vector bundle which is defined independently of choices of defining
function for M (Use Lemmas 2.5.1, 2.5.7).

Given x ¢ 9M, we set L($)(x) = L(O)ITXBM and define

n(x) = n(lL()(x))
z(x) = z(L($)(x))

p(x) = p(lL@®)(x).

Clearly n(x) + z(x) + p(x) = m-1 and it is a straightforward exercise
to verify that n(x), z(x) and p(x) depend only on x € dM and not the
choice of defining function ¢ (see §5, Chapter 2).

Definition 5.10.3. Let M be a relatively compact domain of the
complex manifold M and assume that M has 02 boundary. Suppose that M
has defining function ¢. Then we say that M is g-pseudoconvex

(respectively, strictly q-pseudoconvex) if for all x € M we have
n(x) < q (respectively, n(x) + z(x) < q).

Remark. As in Proposition 2.5.12, we may show that g-pseudo-

convexivity is a local property of the boundary.
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Example 1. Let 2 be an L.p. (respectively, s.L.p.) domain in
G". Then Q is O-pseudoconvex (respectively, strictly O-pseudoconvex).

Remark . In the sequel we shall always refer to O-pseudoconvex
(respectively, strictly O-psuedoconvex) domains as L.p. (respectively,
s.L.p.) domains.

Proposition 5.10.4. Let M be an s.L.p. domain in M. Then
there exists a C2 defining function ¢ for M such that L(¢)|3M is
positive definite.

Proof. Same as the proofs of Propositions 2.5.5 and
Lemma 2.5.11, 0

In Chapter 7 we shall prove the basic result of Grauert to the
effect that an s.L.p. domain is holomorphically convex. However, an

8.L.p. domain need not be Stein.
Examples.

2, The unit Euclidean disc E(l) c ¢" is s.L.p. (take

¢(2) = )leil2 - 1). Suppose n > 1 and let M, M denote the result of
blowing up E(1), G™ at zero. Then M will be an s.L.p. domain in M as
we may choose a defining function for M which is equal to ¢ on a
neighbourhood of 3M in M which does not contain the exceptional variety
of the blowing up. However, M cannot be Stein as the exceptional
variety of the blowing up is a compact complex submanifold of M biholo-
n-1 n-l(c)

morphic to P "(¢). In particular, we cannot separate points on P

by holomorphic functions on M (Proposition4.2.4).

3. Let L denote the universal line bundle on P"(C). Then L is
biholomorphic to cn+1 blown up at zero. Hence, by example 2, there is
an s.L.p. neighbourhood of the zero section of L. More generally, if X
is any compact complex submanifold of P"(C) then Ly = L|X has an s.L.p.

neighbourhood of the zero section.

Motivated by example 2, we now give an important definition due
to Grauert (1],

Definition 5.10.5. Let E be a holomorphic vector bundle on the
compact complex manifold M. We say that E is weakly negative if there
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18 an s.L.p. neighbourhood of the zero section of E. We say that E is
weakly positive if E* is weakly negative.

Remark. One of the main theorems we prove in Chapter 7 is that
if a compact complex manifold M admits a weakly positive vector bundle
then M is algebraic.

Our definition of the q-pseudoconvexivity of a complex manifold
M depended on representing M as a domain in some larger complex
manifold. Our next aim is to present an intrinsic definition of

pseudoconvexivity.

Definition 5.10.6. Suppose that M is an m-dimensional complex
manifold and let ¢ € C;;(H). We say that ¢ is strictly q-plurisubharmonic
(abbreviated, strictly q-psh) if L(¢)(x) has at least m -q positive

eigenvalues at every point x of M.

Recall from §5, Chapter 2, that ¢ € C;;(H) is said to be an
exhaustion function for M if for all c ¢ R,

M, = {xeM: ¢(x) <cl

is relatively compact subset of M.

Definition 5.10.7. A complex manifold M is said to be
q-complete 1f there exists a strictly q-psh exhaustion function ¢ on M.

Remarks .

1. Clearly q-complete implies (q+l)-complete.

2. We often refer to O-complete manifolds as being holomorphically
complete.

Theorem 5.10.8. Every Stein manifold is O-complete.
Proof. Exactly the same as the proof of Theorem 2.5.20. 0

Remark. We shall prove in Chapter 11 that every O-complete
manifold is Stein.
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Next we wish to say a few words about the relationship between
q-pseudoconvexivity and q-completeness. Suppose that M is a domain in
M and that M has C2 boundary and M 18 Stein. Then it can be shown that
if M 18 q-pseudoconvex then M is q-complete (see Eastwood and Vigna
Suria [1]). We only remark here that if q = O then the proof that
q-pseudoconvexivity implies q-completeness is similar to the proof of
Proposition 2.5.15 and makes use of the elementary fact that we can
find a Stein neighbourhood of M in M which embeds in the unit Euclidean
disc in some GN (cf. Lemma 7.2.20). Conversely, it can be shown that

q-completeness implies q-pseudoconvexivity.

In Chapter 11 we shall show that q-completeness implies
existence theorems for the §-operator. To be precise, we shall show that
if M 18 q-complete, E is a holomorphic vector bundle on E and
¢ € Ct’s(M,E) is 3-closed then there exists Ve Cr’s-l(M,E) such that
Sw = ¢ provided that 8 2 q+1, r 2 0. In particular, if M is Stein

we can always solve the generalised Cauchy-Riemann equations on M.

Although it is not our intention to say very much here about
q-pseudoconvexivity or q-completeness in case q # 0, we remark that
q-pseudoconvexivity may be regarded as a measure of how far away a
domain is from being s.L.p. Moreover, the concept may be related to
extension problems in complex analysis. See, for example, Eastwood and
Vigna Suria [1] and Andreotti and Grauert [1]. We give one example to

show how we may construct q-complete spaces, q # O.

Example 4. (see also Griffiths [1; Theorem H], Serre [1],
Simha [1], Vesentini [1]).

Let M be a p-complete manifold and fl""’fq+1 e A(M). Set

Z = Z(fl,...,fq+1). Then we claim that Y = M\ Z is (p+q)-complete.

In particular if M is Stein and q = 0, Y is O-complete and therefore
Stein by the result cited above. Of course, in this case it is easy to
verify directly that Y is holomorphically convex and therefore Stein as

fIl e A(Y).

Suppose ¢ is a strictly p-psh exhaustion function on M.
Choose a C~ function g: R + R such that

1. S(C)’ 8'(t)v 8"(t) > 0. te R.
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2. g(t) *®ag t + ™,

qtl
3. gd > ) lfilz on Y.

i=1
q+l 2 q+l 2
Set 8 = g - log § I£,1°. Since L(log § 1£,17) 1s positive
i=1 i=1

semi-definite with at most q positive eigenvalues we see easily that 6
is strictly (p+q)-psh on Y. It is sufficient to show that @ is an
exhaustion function on Y. That is, Yc = {x € Y: 9(x) < c} is a relatively
compact subset of Y for all ¢ € R, Suppose f(x) < c. Certainly,

q+l

|f1|2 2 eg(o)—c >e >0
i=1

Consequently, Yc c M\U, where U is an open neighbourhood of Z. On the
other hand

e8®) /54) < e°

-1
¢ on Yc. Hence Yc c Mc, C=g (e®). It follows that Yc

is a relatively compact subset of Y.

and so g(¢) < e

Finally, we conclude this stction with a few brief remarks about
the Bergman kernel function of a complex manifold. Given an

m-dimensional complex manifold M, let
LZ(M) = {f e Qm(M): f EAF < o},
M

Then LZ(M) has the structure of a Hilbert space with inner product
defined by (f,g) = IM f A§. As in §6, Chapter 2 we can construct a
Bergman kernel function K(z,Z) for LZ(M) and then K(z,z) defines a
smooth section of Cm’m(M) (cf. Proposition 2.6.6). If instead, we start
with an Hermitian metric on M and corresponding measure d)\ on M, we may
define LZ(M) = {f € A(M): f Iflsz < o}, In this case we may show that
there exists a Bergman kernel function K(z,E) for LZ(M) and that for
important examples Log K(z,z) will be a strictly q-psh exhaustion
function on M (cf. Proposition 2.6.8).
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CHAPTER 6.  SHEAF THEORY

Introduction

In Section 1 of this chapter we present the basic definitions and
constructions of sheaf theory with many motivating examples. In
section 2 we give an application of sheaf theory to prove the existence
and uniqueness of the envelope of holomorphy of a Riemann domain. In
gsection 3 we define the sheaf cohomology groups of a sheaf of groups
over a paracompact space using fine resolutions. Amongst the most
important results we prove are Leray's theorem and the existence of a
canonical, natural isomorphism between Cech cohomology and sheaf
cohomology. We conclude with a number of important examples and

computations involving the 1lst. Chern class.

51, Sheaves and presheaves

Our aim in this section is to develop the theory of sheaves and
show how it provides a unifying topological framework for the study of
a diverse range of structures on topological spaces. Our presentation
will be geared towards applications in complex analysis and the reader
may consult Godement [1] or Tennison [1) for more extensive and general

expositions of the theory of sheaves.
Let X be a topological space with tdpology of open sets .

Definition 6.1.1. A presheaf of groups on X is a collection of
groups G(U), one for each U ¢ U, together with group homomorphisms
Tyt G(U) + G(V), defined for V,U ¢ U and V c U, such that

1. If U=¢@¢, G(U) is the zero group.

2. For all U ¢ U, r

U is the identity.

3. For U,V,We Uand Wc V c U, we have r,,r.,,, = T

LAARY) WU’

We usually denote the presheaf by {G(U),rvu} or just G,

Remarks.

1. Replacing the word "group" everywhere by "set", "ring", "field",
"algebra'", etc. we may define presheaves of sets, rings, fields, algebras,

etc. We shall assume these definitions in the sequel.
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2. The homomorphisms v occuring in the definition are usually
called restriction homomorphisms. In all our examples they will be
restriction maps and we therefore generally omit any explicit

specification.

As we shall soon see, many basic structures in analysis can be

formulated in terms of presheaves.
Examples.

1. For each U ¢ U, let C(U) denote the ring of continuous C-valued
functions on U. Given U,V ¢ U, with V c U, define Tyy' C(U) + C(V) to
be restriction of continuous functions on U to V. Then Cy = (C(U),rvu}
is a presheaf of rings on X: The presheaf of continuous C-valued

functions on X.

2. Let T be a ring with discrete topology. For each U ¢ U, let
C(U,T) denote the ring of continuous I'-vslued functions on U. Defining
Tyy a8 restriction, V c U, the set Ty = {C(U,r),rvu} is a presheaf of
rings on X: The presheaf of locally constant T'-valued functions om X.

3. Suppose X has the structure of a differential manifold. Let
Ck(U) denote the ring of Ck C-valued functions on U, U ¢ U, 1 < k < =,
Then C; - {ck(U),rVU} is a presheaf of rings on X: The presheaf of Ck
C-valued functions on X. We shall let Dx =- {CQ(U),rVU} denote the
presheaf of ¢ C-valued functions on X.

4. Suppose X has the structure of a complex manifold. We let
0x - {A(U),rvu} denote the presheaf of analytic C-valued functions on X.
In the sequel we usually refer to 0x as the Oka presheaf of X. For each U
let S(U) denote the multiplicatively closed subset of A(U) consisting
of all analytic functions on U which do not vanish identically on any
component of U. Set M(U) = A(U)S(U)' That is, M(U) is the quotient
ring of A(U) with respect to the multiplicative system S(U) (See Zariski
and Samuel [1; page 46] and observe that if U is connected M(U) is just
the quotient field of A(U)). Then, defining rVU
My - {M(U),rvu} is a presheaf of rings on X: The presheaf of meromorphic

as restriction,

functions on X.

5. Let Z be an analytic subset of the complex manifold X. For each
UeU, let I;(U) = {f ¢ A(U): £I12 = 0}. Then I, = {I,(V),r,} is a
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presheaf of ideals of Oy. That is, for each U ¢ U, I,(U) is an ideal
of A(U). We call I, the ideal presheaf of Z.

6. Let E denote a holomorphic vector bundle over X. For each U ¢ U,
we let E(U) denote the space of holomorphic sections of E over U.
Each E(U) 1s an A(U)-module in the obvious way and the presheaf
E = {g(v),rvv} is thus an example of a presheaf of Oy-modules. We call
E the presheaf of holomorphic sections of E. In case E 18 a smooth, not
necessarily holomorphic,mvector bundle over X, we let E_ = {Em(u)"vu)
denote the presheaf of C sections of E. Thus, E_ is an example of a
presheaf of Dx—modules and, of course, the construction works for any
differential manifold X.

Whilst a presheaf contains essentially all the information about a
particular structure on a topological space, it is a large, seemingly
cumbersome, object. We now describe the process of '"sheafification"
whereby out of every presheaf we can construct a topological space in

such a way that, for all important examples, no information is lost.

Let R = {R(U),rvv) be a presheaf of rings on the topological space
X. Fix x € X. We define an equivalence relation ~x On the rings R(U)
for which x ¢ U. Suppose that U,V ¢ Ux and f ¢ R(U), g € R(V). We say
f is equivalent to g at x, f~xg, if and only if there exists W ¢ ux’
WecUnV, such that

r"U(f) = rwv(g)

Using conditions 2 and 3 of Definition 6.1.1, the reader may easily
verify that ~x is an equivalence relation. We denote the set of ~g
equivalence classes by Rx' The set Rx inherits the structure of a ring

from the rings R(U) and we let r : R(U) + R, denote the corresponding

U,x

"equivalence class' ring homomorphisms, defined for U € Ug. 1In the

sequel we often write fx for LY x(f), f € R(U), and call fx the germ of
’

f at x.
Examples.

7. If we let O denote the Oka presheaf of the complex manifold X, then
0x is just the ring of germs of analytic functions at x (see also
Chapter 3, §1; Chapter 4, §1).
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8. If we let M denote the presheaf of meromorphic functions on the
complex manifold X, then Mx is the field of germs of meromorphic
functions at x (see Chapter 3, §4; Chapter 4, §1).

Set

R = UR
xeX ¥

and let m: R » X denote the projection defined by mapping points in
Rx to x. We now topologise R. Given f ¢ R(U), we have a section t
(relative to T) of R over U defined by f(x) = fx' x € U. For a base of
open sets for the topology of R, we take the collection of sets
?(U) c R, over all U e U and f ¢ R(U). The reader may easily verify that
this defines the base for a topology on R. Clearly the local sections
f:u - R, f € R(U), are continuous in this topology.

Lemma 6.1.2. With the above notation we have
1. m: R+ X is a local homeomorphism.
2. The induced topology on R, < R is discrete for all x € X.

Proof. Property 2 is immediate from 1. For 1 we note that nf
is the identity map on U for all f ¢ R(U) and so 3 maps U homeomorphically
onto T(U) with inverse m|E(U). 0

We call the topological space R, together with the projection
map m: R -+ X, the sheafification of the presheaf R or the sheaf
associated to the presheaf R. We denote the gheaf by the triple (R,m,X)
or, more usually, by the symbol R. The ring Rx = n_l(x) is called the
stalk of the sheaf at x.

Let us summarise our construction. Given a presheaf
R = {R(U),rvu} of rings on X we have a ring R naturally defined at each
point x ¢ X. The disjoint union R of the rings Rx has the natural struc-
ture of a topological space in such a way that the local sections f
associated to f € R(U) are continuous and the projection m: R + X is a
local homeomorphism. Each stalk Rx has the structure of a ring with
discrete topology. The triple (R,m,X) is called a sheaf of rings on X.

Clearly our construction works equally well for presheaves of sets,
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groups, algebras, etc. to yleld sheaves of sets, groups, algebras, etc.
Shortly we shall give a general definition of a sheaf which does not

depend, a priori, on the existence of a presheaf.
Examples.

9. Let Cy denote the sheaf of rings associated to the presheaf Cx
of continuous C-valued functions on X. We call Cy the sheaf of germs
of continuous C-valued functiong on X. Often we drop the subscript
X and just write C (this remark applies also to subsequent examples).
The stalk Cx is the ring of germs of continuous C-valued functions at
x, x € X. Suppose that A: U+ C is a continuous section of C over the
open subset U of X, We claim that there exists a unique a ¢ C(U) such
that @ = A. 1In other words, continuous sections of the sheaf correspond
to continuous C-valued functions. First notice that A determines a
function a: U + ¢ defined by a(x) = A(x)(x) (evaluation of the germ
A(x) at x). We must prove that a is continuous. Let x ¢ U and observe
that by definition of the topology on C we may find an open neighbourhood
Vofx,VcU, and 8 ¢ C(V) such that 8 = A|V. But now s = a|V and so a
is continuous at x. Since x was an arbitrary point in U it follows that
a is continuous on U. Finally a 18 the unique C-valued function on U
satisfying 3 = A since the germ of a at x determines the value of a at x,
x € U. Clearly what we have said above for the presheaf Cx and

D, and

corresponding sheaf Cx works equally well for the presheaves Cx, X

Oy and so we obtain the sheaves of rings

k

X Sheaf of germs of Ck C-valued functions on the differential

manifold X.

c

9,: Sheaf of germs of C” @-valued functions on the differential
manifold X.

ox: Sheaf of germs of analytic functions on the complex
manifold X.

The sheaf 0x i8s often referred to as the Oka sheaf of X.

We remark the important fact that a continuous local section of
C‘; (resp. Qx, Ox) over an open subset U corresponds to a unique Ck
(resp. C”, analytic) function on U. The proof is the same as for Cy-
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Finally, we observe that 0x is an open subset of 9x and that
each stalk 0x is a subring of 9x. We say that 0x is a subsheaf (of
rings) of 9x. Generally, if (R,w,X) and (S,n,X) are sheaves of
rings on X, we say that R is a subsheaf (of rings) of S if R is an open
subset of §, n|R = n and for all x ¢ X, Rx is a subring of Sx' Thus
all the sheaves constructed above are subsheaves of Cx. The reader

may care to formulate the analogous concept of gubpresgheaf.

10. Let T denote a ring with discrete topology and Fx be the presheaf
of locally constant '-valued function on X. Then the corresponding
sheaf, which we shall also denote by Fx, is homeomorphic to X x I'. We
say that Ty is a constant gheaf (that is, topologically a product).
Sections of I'y are I'-valued functions on X which are constant on connec-

ted components of X.

11. Let Z be an analytic subset of the complex manifold X. We let IZ
denote the sheaf associated to the ideal presheaf 1, of Z. Dropping
the subscript Z, we see that for each x ¢ X, lx is an ideal in Ox' For
this reason we refer to I as a sheaf of ideals (of (). Observe that
for x ¢ Z, Ix = Ox whilst if x ¢ 2, Ix g Ox.

12. If E is a holomorphic vector bundle over the complex manifold X,
we let E denote the sheaf of germs of holomorphic sections of E associated
to the presheaf of holomorphic sections of E. We see here that for
each x ¢ X, E 1s an Ox—module and we refer to E as a sheaf of 0-modules.
For our particular example, we see that Ex is a free Ox—module of rank
equal to the fibre dimension of E.

13. Let M denote the sheaf of germs of meromorphic functions on X
asgociated to the presheaf M = {M(U),rvu} of meromorphic functions on X.
Since M 18 a field for all x ¢ X, M is an example of a sheaf of fields.
A continuous section of M over X is called a meromorphic function on X
- see Definition 4.4.4. However, a continuous section of M over an
open subset U of X need not correspond to an element of M(U). This is
a reflection of the fact that elements of M(U) are all quotients of
analytic functions defined on U whilst meromorphic functions on U need
not be representable globally as a quotient of analytic functions. The
simplest example is found by taking X = U = Pl(c) and m any non-constant
meromorphic function on pl(m).
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14. Our final example concerns the topology of the sheaves 9x and OX‘
We shall prove that the topology on Ox is Hausdorff whilst that on 9x
is not, First we prove that 0x is Hausdorff. Let A,B € OX' A ¥ B.

Set x = W(A), y = ®w(B). If x ¢ y, choose disjoint open neighbourhoods
U, Vof x, yand a ¢ A(U), b € A(V) such that a(x) = A, b(y) = B.
Clearly :(U), S(v) are disjoint open neighbourhoods of A, B. If x = y,
choose a connected open neighbourhood U of x and a,b ¢ A(U) such that
a(x) = A, B(x) = B. If a(U) n B(U) # @, uniqueness of analytic
continuation implies that a = b on U contradicting our assumption that
A ¥ B. Hence OX 1s Hausdorff. To show that @y is not Hausdorff it

is enough to observe that for n > 1, we cannot separate the zero germ

from the germ at zero, in R". of the function Y defined by

Y(xl,....xn) = 0, X, S ]

2
= exp(—l/xn), X, > 0.

Since ox is Hausdorff it follows that 0x has the structure of a complex
manifold spread over X (the complex structure on Ox i8 induced from that
on X via the local homeomorphism 7). We shall exploit this fact in our

construction of the envelope of holomorphy in §2.

Next we shall give the general definition of a sheaf and show

how a presheaf is naturally associated to every sheaf.

Suppose that we are given a topological space F and local
homeomorphism n: F + X. We shall say that (F,n,X) is a sheaf of rings
on X if

1. The stalks Fx (= n-l(x)) have the structure of a ring for each

x ¢ X.
2. The ring operations are continuous in the topology on F.

Condition 2 needs further elaboration: Suppose that U is any
open subset of X and s, t are continuous sections of F over U. Then we
require that 8 * t, st are continuous sections of F over U, where we
define addition, subtraction and multiplication of sections using the
ring structure in the stalks. Equivalently, we may take the product F x F
over X x X and restrict to the diagonal A ¢ X x X. Addition, subtraction
and multiplication then define maps of F xF|A to F which should be

continuous.
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Again it is straightforward to define sheaves of sets, groups,
algebras, etc. and we omit formal definitions. In case R is a sheaf
of rings over X, we say that a sheaf S on X is a sheaf of R-modules if
each stalk Sx has the structure of an Rx-module and the module

operations are continuous in the sense described above.

Suppose that (F,n,X) is a sheaf of rings. For each U ¢ U, we let
F(U) denote the space of continuous sections of F over U. Then F(U)
is a ring and, defining restriction homomorphisms in the obvious way,

we see that F' = {F(U),rvu} is a presheaf of rings on X.

Proposition 6.1.3. Let (F,n,X) denote a sheaf of rings on X.
Then the sheafification of the presheaf F' = {F(U),rvu) is equal to F.

Proof. We leave this as an elementary exercise for the reader. [

Example 15. The presheaf M' associated to the sheaf M of germs of
meromorphic functions on X is not generally equal to the presheaf M of
meromorphic functions on X. However, it is clear that M and M' have

the common sheafification M.

Suppose that R is a presheaf of rings on X with associated sheaf
R. We have already seen that for all our examples, except that of
meromorphic functions, R' = R. Necessary and sufficient conditions for
R' to equal R are given by the following elementary lemma the proof of

which we omit.

Proposition 6.1.4. Let R be a presheaf of rings on X with
associated sheaf R. Then R' = R if and only if given any family
{Ui: i € 1} c U4 and corresponding 8y € R(Uy) such that sy = 8y on Uij
for all 1,j ¢ I, there exists a unique 8 ¢ R(lJUi) such that slU1 = 84

iel.

Remarks on terminology and notation. In the literature a sheaf is
often defined to be a presheaf which is equal to the presheafification
of its associated sheaf. What we have called a sheaf is then referred
to as the espace étalé of the sheaf (or presheaf). In the sequel we
usually use the same notation for the sheaf and its associated presheaf.
By virtue of Propositions 6.1.3, 6.1.4 this will not lead to confusion

as, with the exception of the sheaf of germs of meromorphic functions, all
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our basic examples satisfy the conditions of Proposition 6.1.4.
Aside from sheaves of sections of vector bundles and constant sheaves,
we generally use script letters to denote sheaves and follow the

notation developed earlier for our examples on sheaves.

For the remainder of this section we shall be considering
morphisms of sheaves and various constructions involving sheaves. For
the sake of brevity we restrict attention to sheaves of rings and
modules noting that all our definitions generalise straightforwardly

to sheaves of groups, fields, algebras, etc.

Morphisms of sheaves. Let (F,m,X) and (F',n',X) be sheaves of
rings on X. A sheaf morphigm from F to F' is a continuous map A: F + F'
covering the identity on X such that if Ay Fx +> F; denotes the map
induced by A on the stalks at x then A, is a ring homomorphism for all
x ¢ X, We say that A is a sheaf isomorphism if A 18 a homeomorphism

and A and A-l are sheaf morphisms.
Remarks .

1. We shall often refer to a sheaf morphism between sheaves of rings
(or groups, algebras, etc.) as a sheaf homomorphism or just homcmorphtem.
In case F, F' are S-modules, where S is a sheaf of rings on X, we refer

to a sheaf morphism between F and F' as an S-module homomorphism.

2. Notice that a sheaf morphism is a local homeomorphism and therefore

an open mapping.

We may similarly define morphisms between presheaves. Indeed,
suppose R = {R(U),rvu} and S = {S(U),svu) are presheaves of rings on X.
Then a morphism a: R + S consists of a family {aU: R(U) + S(U): U € U}
of ring homomorphisms which are compatible with the restriction homomorph-
isms. That is, for U,V € U, U > V, we have the commutative diagram

4y
R(U) ————>s(U)
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The reader may easily verify that a morphism a: R + S of
presheaves induces a unique shesf morphism A: R + S between the
sheaves associated to R and S. Conversely, any sheaf morphism
A: R + S 18 associated to a unique presheaf morphism a: R' + S' between
the presheaves associated to R and S. We frequently use these
observations in our construction of sheaf morphisms and indeed in the
following examples all the sheaf morphisms are constructed first at

the presheaf level.
Examples.

16. Let E and F be holomorphic vector bundles over the complex manifold
X and A: E + F be a holomorphic vector bundle map. Then E and F are
Ox—modules and A induces in the obvious way an Ox-module homomorphism
A: E-+F.

17. Let X be a differential manifold and for p 2 0 let gp denote the

sheaf of germs of c” sections of the bundle Apcrx of complex p-forms.

0

Note that C” =92, and each cP has the structure of a9y-module. The

constant sheaf ¢ is a subsheaf of 2, and so the sheaves Ep have the

X
structure of C-modules. For p > 0, exterior differentiation induces a

morphism d: _Qp - _(_:_p+1 of C-modules. Observe that d is certainly not

morphism of 9x-1nodu1es .

18, Let X be a complex manifold and for p,q 2 0 let gp,q denote the
sheaf of germs of C~ sections of the bundle AP X)) of complex
(p,q)-forms. As in example 17, the operators 3 and 3 induce C-module

homomor phisms
3: cPrd o, cPtLha

3 cPd . Pt

Since §0x = 0, we see that J: gp,q - gp,q+1 is actually an Ox—module
homomorphism. Similarly 3 is an Dx—module homomorphism where 6)( denotes

the sheaf of germs of anti-holomorphic functions on X.

19. Let X be a complex manifold and for p 2 0O let QP denote the
sheaf of germs of holomorphic sections of /\P’o (M)'. Since 3@P) = o,
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we see that the operator d induces a C-module homomorphism

ptl

aral - ¥, p2o0.

Definition 6.1.5. A sequence F —é—>G B H of sheaves is said
A B
to be exact at G if the sequence Fx ———)E->Gx ——lavHx of rings is exact

for all x ¢ X .

Remark. We may define a sequence R 2,521 o8 presheaves to

be exact at S if the sequence R(U) -jil* S(U) —}!La'T(U) of rings is

exact for all U € (. It is most important to note that presheaf
exactness is not equivalent to sheaf exactness and a sheaf exact sequence
will not generally give rise to a presheaf exact sequence (the converse
is always true). In fact sheaf exactness is very much a local matter
whilst presheaf exactness is essentially global. In §3 we show how

sheaf cohomology enables us to measure the deviation from presheaf
exactness of a given sheaf exact sequence. We should also mention the
important class of coherent Ox-modules that we introduce in Chapter 7

for which it is true that sheaf exactness implies '"local" presheaf

exactness.

A sequence 0 » F —ﬁL,G IR 0 of sheaves is said to be short

A
exact if each of the sequences 0 -+ Fx ——z—>Gx X, Hx + 0 1s a short

exact sequence, x € X, We may similarly define exactness for general

sequences and we follow the usual notational conventions.

Examples.

20. Let 0+ E —£L>F -1L>G + 0 be a short exact sequence of holomorphic

vector bundles over the complex manifold X. Then the corresponding
A
sequence 0 + E —=>F —E->g —> 0 of sheaves is a short exact sequence of

Ox—modules.

21. Let X be an n-dimensional differential manifold. The de Rham
complex is the sequence of C-modules given by exterior differentiation:

o-.m—i—mx Ayt 4, 4™ dsehao .
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(1 denotes inclusion).

The Poincaré lemma implies that the de Rham complex is sheaf exact.
However, the de Rham complex is generally not presheaf exact as we shall
now show. Suppose that X is compact, oriented and without boundary.

We prove that the de Rham complex is not presheaf exact at EP. For this
it is enough to find an n-form on X (that is, continuous section of g?
over X) which is not the exterior derivative of an (n-1)-form on X.
Choose any n-form ¢ on X such that fxo # 0 (Such forms always exist
with support in a coordinate chart). Now d¢ = O and so if the de Rham
complex is presheaf exact at g? there exists an (n-1)-form § on X

such that dy = ¢. But this cannot be since by Stokes' theorem

IXO = dew = Iaxw = 0. We shall see in §3 that the obstruction to ¢
being the boundary of an (n-1)-form is topological and lies in Hn(X,G) -
the nth. cohomology group of X. More precisely, ¢ determines an element
[¢] € H"(X,C) and ¢ is a boundary if and only if [¢] = O.

22, Let X be an n-dimensional complex manifold. For p,q 2 0 we have
the Dolbeault complexes

0+ L PO N L RO 2, Pl 9, Pm L,

0+t 500 3 clha 3 3 cn-lia 3, omia

Here i denotes inclusion andﬁq denotes the sheaf of germs of anti-
holomorphic sections of the anti-holomorphic bundle ﬁ‘o’q()D'. In

case p = 0, we obtain the important complex

-0

0+ 0,9, _3_>(_:°'li_>_“i>g°'“"1 8, c0m

which relates the Oka sheaf to the sheaves CO’9.
It is an immediate consequence of the Dolbeault-Grothendieck lemma

(Theorem 5.8.1) that the Dolbeault complexes are all exact.

23. It follows from example 19 that if X is an n-dimensional complex

manifold we have a complex

0+¢» 0y 25l 25, Bl B,0n .

of C-modules. We shall now prove that this sequence is exact.
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Exactness at 0x is clear aince d|0x = 3. Now suppose p > 0 and let
¢ ¢ 2P be d-closed. Since 9 = 0and d = 3+ 3, d¢p = 0 and we see by
the Poincaré lemma that there exists ¥ ¢ CP such that dy = ¢. Since
dp = 3 + 59 € PO ve see that ¥ € cP"1'0 and 5 = 0. That 1s

Ve Qp-l and ¢ = Y. Hence the sequence is exact.

For the next few paragraphs we consider some general constructions

involving sheaves, presheaves and morphisms.

Definition 6.1.6. Let A: F -+ G be a sheaf homomorphism and
{au} - {aU: F(U) + G(U)} denote the corresponding morphism of presheaves.
We define the preaheaf kernel of A, preaheaf cokernel of A and preaheaf
tmage of A to be the preaheaves given by U F—>Ker(au), U F*’Coker(au)
and U F—>Im(au) respectively. We denote the associated sheaves by
Ker(A), Coker(A) and Im(A) respectively and refer to them as the (sheaf)
kernel, cokernel and image of A respectively.

Remarks.

1. It is easy to see that Ker(A) 1is always equal to the presheaf
kernel of A butthat, in general, Im(A) and Coker(A) are not equal to
the image and cokernel preaheaves of A.

2. For all x € X, we have Ker(A)x ] Ker(Ax), Coker(A)x 4 Coker(Ax)
and Im(A), ~ Im(A,).

3. We say that A 1is injective 1f Ker(A) = 0; aurjective if Coker(A) = 0.
By remark 2 this is equivalent to injectivity or surjectivity at the
stalk level.

4. A aheaf aequence F —L->G l)H is exact at G if and only if
Im(A) = Ker(B) (Here we are regarding Im(A), Ker(B) as subsheaves of G).

S, Associated to a sheaf homomorphiam A: F + G we have the exact

sheaf sequence
0 + Ker(A) —>F A5 45 coker(a) + 0

(Here 1 and q are induced from the inclusion and quotient maps
reapectively).
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Suppose i: F + G 18 the inclusion map of F as a subsheaf of G.
We define the quotient sheaf G/F to be the sheaf associated to the
presheaf U + G(U)/F(U). We have the corresponding short exact

sequence

0+F-ts6-doG/F+0.

We remark that G/F is isomorphic to Coker(i) and that for all
x € X, (G/F)x = Gx/Fx‘

Examples.

24, Let 0, M respectively denote the Oka-sheaf and sheaf of germs of
meromorphic functions onthe complex manifold X. We have the short

exact sequence of sheaves of Abelian groups
0+0-+M->M0~+0.

We see that local sections of M/0 are just the principal parts of
meromorphic functions. That is, if m,m' ¢ M(U) then m,m' determine the
same section of M/0 if and only if m-m' ¢ O(U) (=A(U)). We can now
give a sheaf theoretic formulation of the Cousin I problem (see
Definition 3.4.9): The data for the Cousin I problem on X is a
continuous section P of M/0 over X. The Cousin I problem (for P) is then

to find a continuous section m of M over X such that q(m) = P.

25. Let O*, Mk denote the multiplicative sheaves of groups of units of
0, M on the complex manifold X. Thus, 0;, M: will be the groups of
invertible germs in Ox, Mx respectively (see §4, Chapter 3). We let D
denote the quotient sheaf M*/0*. Then D is a sheaf of Abelian groups
called the sheaf of germs of divisors on X. We have the short exact

sequence
0+ 0+ M +D 0,

Observe that a continuous section of D over X is a Cartier diviseor
(Definition 4.5.9). We may now give a sheaf theoretic formulation of
the Cousin II problem (Definition 3.4.10): The data for the Cousin II
problem is a continuous section d of D over X. The Cousin II problem

(for d) is to find a continuous section m of M* such that q(m) = d.
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If we take X to be a Riemann surface we see that vx = Z for all x € X.
However, D is far from being the constant sheaf Z as continuous
sections of D are always non-zero on a digcrete subset of X. In

fact the "zero set' of a continuous section of D is always an open

subset of X!

26. Let Z be an analytic subset of the complex manifold X. We start
by defining the Oka or structure sheaf of Z. Let U be an open subset of
X and f,g € Ox(U). We say f and g are Z-equivalent if f = gon Z n U.
That is, if f-g ¢ IZ(U) (see Example 5). The set of Z-equivalence
classes associated to U is isomorphic to Ox(U)/IZ(U) and
U~ Ox(U)/IZ(U) defines a presheaf of rings on X. We denote the
associated sheaf by OZ and observe that OZ,x =0, x ¢ Z. We call Oz
the Oka or gtructure sheaf of Z. Now 0Z is just the quotient sheaf

OX/Iz and we have the short exact sequence
0-»12-»0x+oz->0.

Any element of Ox(U)/IZ(U) determines a well defined continuous function
on Z n U, Consequently, a continuous section of Oz over an open set U

of X determines a well-defined continuous function on Z n U. We call
such functions analytic functions on Z n U. It is easy to see that a
function f: Z n U » C will be analytic if and only 1f for every x ¢ Z n U
there exists an open neighbourhood V of x in X and g € A(V) such that
glZnUnVef|ZnV.

Definition 6.1.7. Let R be a sheaf of rings on X and F, G be

sheaves of R-modules.

1. The direct sun F @ G of F and G 18 the sheaf of R-modules
associated to the presheaf U + F(U) @ G(U).

2. The tensor product F oRG of F and G over R 18 the sheaf of
R-modules associated to the presheaf U » F(U)OR(U)G(U).

Remarks .

1. It is easily seen that (FeG), = F,e G, and (FORG)x = FxoRxGx’

x € X and we assume these properties in the sequel.

2, We denote the p-fold direct sum of the sheaf of R-modules F by FP.
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Examples.

27. Let E, F be holomorphic vector bundles over the complex manifold
X. ThenEQ F=EoFand Eo F = E’OE (equality here means, of course,
up to natural isomorphism). Similar relations hold for smooth or

continuous vector bundles.

28. The sheaf of germs of ¢P-valued holomorphic functions on a complex
manifold is isomorphic to oP (we say the sheaf is free of rank p - see
Definition €.1.8 below)

29, Let E be a holomorphic vector bundle of dimension p over the
complex manifold X. Then E is locally isomorphic to OP. That is, we
may find an open neighbourhood U of each x e X such that E|U = 0P,
Here the restriction of sheaves to an open set has the obvious inter-

pretation. In particular, OXIU - OU'

Definition 6.1.8. Suppose F is a sheaf of R-modules on X. We
say that F is a locally free sheaf of R-modules of rank p if F is
locally isomorphic to RP. We say that F is free of rank p if F = RP.

The next proposition is valid, with the aame proof, for smooth

or continuous vector bundles.

Proposition 6.1.9. Let X be a complex manifold. There is a
bijective correspondence between isomorphism classes of locally free
sheaves of 0-modules of finite rank over X and holomorphic vector

bundles over X.

Proof. We have already indicated in Example 29 that the sheaf of
holomorphic sections of a holomorphic vector bundle is a locally free
sheaf of (-modules of finite rank. Suppose now that F is a locally free
gsheaf of O-modules on X of rank p. Thus we have an open cover (Ui} of X
and corresponding Oui—isomorphisms by FIU1 > 051.
is an isomorphism

i3’

. oP L P - o1
Define ¢ OUij Oui.1 by @11 ¢1¢j . Now ¢1j

of the (,, -module 05 and 8o is given by a p x p-matrix with holomorphic
13 1j

entries defined on Uij' That is, @11 determines a holomorphic map

+ GL(p,C). Clearly the (¢1j} are the transition functions for a

U

¢1j: Uij

holomorphic vector bundle E on X. We leave it to the reader to check
that E = F. 8]
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Example 30. In this example we follow the notation and
assumptions of Examples 18 and 22. Thus for p,q 2 0 we have an
0-homomorphism 3: g?'q + g?’q+1 of sheaves over the complex manifold X.
If E 18 a holomorphic vector bundle over X, E is a sheaf of (-modules
and so, since 3 is an O-homomorphism, we may form

(= 301): Ep.q%E - g_p.q-ﬂﬂ,oE .
But gp’qaog = g"'qogg:“ = Ap,q (M,E)!. Hence, as in §7 of Chapter 5,
we have extended the 3-operator to E-valued forms. In the sequel we
set AP IME)! = P UE) and AP (M,E)' = oP(E). Using the

Dolbeault~Grothendieck lemma as in Example 22, we find that the Dolbeault

complexes
0+ P(E) 1> PO B> ... BscPr Iy s cPrE) 40

are exact for p 2 0.

Next we see how sheaves transform under maps of the underlying

topological spaces.

Suppose f: X = Y is a continuous map of topological spaces and
(F,m, Y) i8 a sheaf of rings on Y. We shall define a sheaf f-lF of
rings on X called the tnverse image sheaf of F. To this end, the stalk

of £71F at x e X will be equal, as a ring, to F We let £71F be

f(x)*

the disjoint union of the rings F over x ¢ X. It remains to

_ £ (x)
topologise f 1F. For a basis of open sets for the topology on f lF we
take the set of all images s(U), where U is an open subset of X and 8 is

a section of f_lF over U such that ws: U + Y is continuous.
Examples.

31. Let Z be a subset of X with induced topology and i: Z + X denote
the inclusion map. If F is a sheaf on X we call 1-1F the restriction of
F to Z and denote it by F|Z or F,.

32. Let F be a sheaf of R-modules on Y and f: X + Y be continuous.
Then f-lF is a sheaf of f‘lR—modulea on X. Suppose that X, Y are complex
manifolds, f is holomorphic and E is a holomorphic vector bundle over Y.
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It i8 natural to ask for the relation between f-IE and the sheaf of
holomorphic sections of the pull-back bundle f*E. Now f IB is an f 10
module rather than an 0 -module. However, 0 is naturally an f 10 -
module - indeed we have a sheaf homomorphiam of £ 0Y into 0 defined
in the obvious way by composition of elements of f 10 with f. Hence

we may form the sheaf

(4 = £ lEe . O
f (0 )
Now f*E is a sheaf of 0 -modules and the reader may verify that f*E = f*E.
Generally, for any aheaf F of Oy-modules, we define f*F = £ Fo a1 ox.
£ 7(0,)
Y

and f*F will then be a sheaf of OX—modules on X.

Next we turn to the push-forward of sheaves. Suppose f: X + Y is
a continuous map and (F,m,X) 18 a sheaf of rings on X. We define the
direct image sheaf f,F to be the sheaf of rings on Y associated to the
presheaf U + F(f-l(u)).

Example 33. If f: X + Y 18 a holomorphic map of complex manifolds
and F is a sheaf of Ox-modules on X then f4F is a sheaf of f*ox-modules
on Y. The reader may verify that we have a canonical sheaf morphism of
Oy into f*ox and so f,F has the natural structure of an (Oy-module. If E
is a holomorphic vector bundle over X, f,E will not generally be the
sheaf of sections of a holomorphic vector bundle over Y. A simple example
is found by taking the sheaf of sections § (= 0) of the trivial bundle
€ over € and the map f: ¢ + € defined by f(z) = 22, It is easily verified
that f*g is not locally free (see also the discussion below and Chapter 7).

Direct image sheaves play a most important role in complex analysis
but are considerably more difficult to describe and analyse than inverse
image sheaves. The full analysis of direct image sheaves requires the
machinery of spectral sequences (see Godement [1] and also Griffiths and
Harris [1; Chapter 3]). Here we shall only describe the stalks of direct
image sheaves and then only in the case when the underlying spaces and map
satisfy additional conditions.
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Proposition 6.1.10. Let (F,m,X) be a sheaf of rings on X and
f: X > Y be continuous. Suppose that X, Y are locally compact and that
f is proper (that is, inverse images of compact sets are compact). Then
£4F, 1s naturally isomorphic to FeE (), all y e Y. (F(E L)
denotes the spaces of continuous sections of the sheaf F, restricted to
-1 -1
f “(y), over £ “(y)).

Our proof follows that given in Godement [1]. First we need some

preliminary lemmas which are of interest in their own right.

Lemma 6.1.11. Let {M1: i € 1} be a locally finite cover by
closed sets of the topological space X. Suppose that (F,m,X) is a sheaf
of rings on X and that for each 1 ¢ I we are given a continuous section
N of FM . Then, if the {81} aatisfy the compatibility condition

i
8y " Bj on M1 n Mj’ there exists s ¢ F(X) such that sIMi = 8.

Proof. First we remark that the lemma is trivial if the {Mi}
form an open cover of X. Clearly our conditions on the {31) imply that

there exists a unique section 8 of F over X which restricts to s, on Mi'

i
We must show that 8 is continuous. Now, given x ¢ X, we may find an open
neighbourhood U of x which meets only finitely many Mi’ say Ml""'Mp'
As the M, are closed, we may assume that U is chosen so that

XeMn...onM Shrinking U further if necessary we may also suppose

that there existz t € F(U) such that t(x) = g(x) = sl(x) -, = sp(x).

By definition of the sheaf topology on F, there exist open neighbourhoods
UJ of x such that t = sj on Uj, 1 <j < p. We may suppose U = Uj’

1< Jsp. Hence s and t are equal inUn (M) v ... v Mp) = U and 80 8

is continuous at x. 0

Lemma 6.1.12. Let S be a closed subset of the paracompact space X
and suppose that F is a sheaf on X and 8 ¢ F(S) (= FS(S)). Then there
exists an open neighbourhood V of S in X and 8 € F(V) such that 8|S = s.

Proof. By definition of the topology on F, we may find an open
neighbourhood U in X of every point x ¢ S and t € F(U) such that
t|lUn S = g, Hence, by the paracompactness of x, we may find a locally
finite open cover (Uiz 1 € I} of S and sections 8y € F(Ui) such that
84lU; n S = s for all 1 € I. Take a refinement {Vi} of U; such that
V1 c U1 for all 1 and let W be the subset of X consisting of all points

x in L&Vi such that if x ¢ Vi n ¥, then 8, (x) = sj(x). By Lemma 6.1.11,

3
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applied to FlW, the (si}define a continuous section s of F over W. We
claim that W contains an open neighbourhood of S. Let x ¢ S. There
exists an open neighbourhood V of x which meets only finitely many of the
Vi's, say vl""’6p° Shrinking V we may suppose that x ¢ ﬁl,...,Vp.

Now el(x) - ,,. = sp(x) and so, shrinking V further if necessary, we

may suppose that 8),...,8, are equal on V., Now observe that V c W, 0

P

Lemma 6.1.13. Let f: X » Y be a proper continuous map between
locally compact spaces. Fix y € Y and let V be any open neighbourhood
of f-l(y) in X. Then there exists an open neighbourhood U of y in Y
such that f_l(U) c V. 1In other words, a fundamental system of open

neighbourhoods for f_l(y) is given by (f-l(U): U an open neighbourhood of y

Proof. The intersection ﬂf-l(ﬁ) over all relatively compact

neighbourhoods U of y in Y is clearly equal to f_l(y). Since each f_l

¢}
is compact, it follows that for some relatively compact neighbourhood
U of y we must have f_l(ﬁ) n (X\V) = @. (For an alternative proof of

this lemma, see the exercises at the end of the section). 8]

Proof of Proposition 6.1.10. We first remark that we have a
natural homomorphism 6: f*Fy -+ F(f-l(y)) defined in the obvious way. We
must show that F is bijective. Let y € F(f-l(y)). By Lemma 6.1.12,
there exists an open neighbourhood V of f—l(y) and ; € F(V) such that
;If-l(y) = y. By Lemma 6.1.13, we may assume that V = f-l(U), for some
open neighbourhood U of y. But now ; lies in the presheaf generating
f.F and so determines an element of f*Fy. Clearly this construction

gives the required inverse to 0. 0

We now briefly look at the use of sheaf formalism in defining
structures on topological spaces. Suppose X is a topological space and
F 1s a subsheaf of C-algebras of Cy (regarded as a sheaf of C-algebras).
We may think of F as defining a structure on X: Structure of all
functions of type F (that is, functions of type F would be given by
continuous sections of F). All the structures so far considered -
analytic, smooth, etc. - are locally defined and we shall now exploit
this fact to give sheaf theoretic definitions of various structures on

topological spaces.
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Example 34. Let X be a topological space and F be a subsheaf of
C-algebras of Cy. Suppose that F 1s locally isomorphic to the sheaf
of germs of c” functions on R". Then X may be given the unique
structure of a differential manifold withgx = F, Before proving our
assertion we need to explain what is meant by (local) isomorphism of
sheaves defined over different topological spaces. For our example,
we require that we can find an open neighbourhood U of each point x ¢ X
and a homeomorphism ¢: U + ¢(U) c R" such that the induced map

o*: c¢(U) -+ CU restricts to an isomorphism of 9 with FU. We see

$(U)
that 1f F is locally isomorphic to 9, we may find an open cover {Ui} of
X and corresponding homeomorphism ¢i: U1 - ¢(Ui) c R" such that ‘N

induces an isomorphism of 9 with FU for all 1, It is now a
i

¢(U1)
straightforward matter to verify that {(U1'°1)} defines a differential
atlas on X and that the associated structure sheaf 9y = F. The same
argument works if F is locally isomorphic to the Oka-sheaf of ¢" and in
this case we find that X has the structure of an n-dimensional complex
manifold with Oka sheaf equal to F.

Motivated by the example above we may now give an intrinsic
definition of a (reduced) analytic space which generalises our earlier
definition of analytic set. First we define the local models for
analytic spaces: The local models for analytic spaces will be the set
of all pairs'(Z,Oz), where Z is an analytic subset of an open subset
of some C" and Oz is the structure sheaf of Z (restricted to Z). A
(reduced) analytic space will then be a pair (X,0y), where X is a
topological space and Oy is a subsheaf of C-algebras of Oy which is
locally isomorphic to a local model. That is, we may find an open
neighbourhood V of any point x ¢ X, a local model (Z,Oz) and a
homeomorphism of V onto Z such that ¢ induces an isomorphism of Ov with
Oz ("isomorphism" in the sense described in Example 34).

Remark. Unfortunately fibre products of (reduced) analytic
spaces cannot generally be constructed within the category of (reduced)
analytic spaces. The problem lies with the fact that the structure
sheaves we obtain when attempting these constructions may have nil-
potents. Thus, the category of analytic spaces has to be enlarged so
that it is closed under fibre products. For this, instead of consider-

ing subsheaves of Cx, we consider sheaves of local C-algebras on X:



86.

A sheaf F on X is said to be a sheaf of local C-algebras on X if F is a
sheaf of C-algebras and each Fx has a unique maximal ideal m with
Fx/mx = ¢ for all x ¢ X. A simple example of a sheaf of local C-algebras
which i8 not a subsheaf of Cx is given by taking X to be the origin of
C and F = Ool(zz) (0o denotes the Oka sheaf of ¢ restricted to 0). Let
us now describe the local models for (unreduced) analytic spaces. A
local model will be a pair (X,Ox), where X is an analytic subset of an
open subset U of C" and Oy = Oy/(£yse s B IX, where f£y,...,f € Iy(U)
and X = Z(f1,...,fK). An analytic space is then defined to be a pair
(X,Ox), where 0x is a sheaf of local C-algebras on X which is locally
isomorphic to a local model. For further details and examples the

reader may refer to the introductory article by Malgrange [1].
Exercises.

1. For each open subset U of the topological space X let B(U) denote
the ring of continuous bounded ¢-valued functions on U. Show that
By = {B(U),rvu} is a presheaf of rings on X with sheaficication Cx.
Hence deduce that the presheaf associated to the sheafification of By
is not in general equal to Bx.

2. Let F, G be sheaves of rings on X and Hom(F,G) be the sheaf
associated to the presheaf U » Hom(FU.GU), where Hom(FU,GU) is the ring
of sheaf homomorphisms from FU to GU' Show that for all x € X, we have
a natural map Hom(F,G)x -+ Hom(Fx,Gx) which is, in general, neither

injective nor surjective.

3. Let X be a complex manifold with Oka sheaf 0 and F be a locally
free sheaf of 0-modules of finite rank on X. Define the dual F* of F
to be the sheaf Homo(F,O). Prove that

A) F* ig the sheaf of germs of sections of the dual of the
holomorphic bundle associated to F (up to isomorphism).

B) F** = F,
C) Homo(F,G) = F*eG, for any sheaf of (-modules G.
D) Homo(F,G)x = Hom(Fx,Gx), x € X.

Show that similar results hold for locally free sheaves of Cx- or
Qx-modules.
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4. Let Z be a closed subset of the topological space X and 1: Z + X
denote the inclusion map. If F is a sheaf on Z, set Fa i,F. We
call ? the trivial extension of F to X or the sheaf on X obtained by
extending F by zero outside Z. Show that

A) Fx =0, x¢ 2

- Fx’ xe Z.
B 1¥=xF.
5. Let (F,m,X) be a sheaf of rings and 8 ¢ F(X). Define the support
of 8, supp(s), to be {x ¢ X: s(x) # 0}. Show that supp(s) is a closed

subset of X.

6. Let (F,m,X) be a sheaf of rings. Define the support of F, supp(F),
to be {x € X, Fx # 0}. Show that supp(F) need be neither open nor closed.

7. Let F be a locally free sheaf of OY—modules on the complex
manifold Y and suppose that f: X + Y is a holomorphic map of complex

manifolds. Prove that
f*(Gcof*F) ~ f*GooF, for any sheaf G of Ox-modules on X.

8. Let X,Y be complex manifolds and F, G be sheaves of 0.-, Oy-modules,
prespectively. Show that for any holomorphic map f: X + Y,
Hom(£*G,F) ~ Hom(G,f,F) (We say that f* and f, are adjoint functors
between the categories of Ox- and OY—modules). Deduce that we have
canonical homomorphisms G + f,f*G and f*f,F + F.

9., Let X be a complex manifold and set K = Kernel 32: 99'0 > El'l.

Show that the complex

o»x-»coo aac 4, cLi2g.21 d

is sheaf exact (Hint: For exactness at El'l the argument used in
Example 23 may be helpful).
10. Let f: X + Y be a continuous map of topological spaces. Prove

a) If a: F +» G is a morphism of sheaves over Y then we have a
canonical sheaf map f-l(a): f-lF -+ f—lG of sheaves over X.
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b) f-l is exact. That is, given a short exact sequence

0~+F -256 -!L>H + 0 of sheaves over Y, the sequence

£ (a)

1
o~ £ > el £ s "Ly L 0 s exact.

11. Same assumptions as Ql0. Show that if a: F + G is a morphism of

sheaves over X then we

a) have a canonical sheaf map f,(a): f,F + £,G of sheaves

over Y.
b) f, is left exact. That is, given an exact sequence
0-+F -3¢ —§—9H of sheaves over X, the sequence

f, (a) £ (b)
0+ f,F — £,6 > f,H 1s exact.

c) In general f, is not exact.

(Hint for c¢): Take X = 02\ {0}, Y = C and define f(x,y) = x. Let I
denote the ideal sheaf of £ (0). Show that the f, image of the

sequence Ox -+ Oxll + 0 is not exact).

12, Suppose that f: X + Y is a holomorphic map of complex manifolds.

Prove that

a) If a: F + G is a morphism of sheaves of OY-modules over Y
then we have a canonical sheaf morphism f*a: f*F - f*G of

sheaves of Ox-modules.
b) f* is right exact.

c) f* is generally not left exact.

13. Let X, Y be metrizable topological spaces and f: X + Y be a proper
continuous map. Show that f is closed (that is, f-images of closed sets
are closed). Deduce Lemma 6.1.13 in case X, Y are metrizable (as will

always be the.case if X, Y are manifolds).

14. (Koszul complex). Let E be a holomorphic vector bundle of rank q
on the complex manifold M and suppose s ¢ 2(E). Show that we have
complexes of (-modules

B8 B 8
0+0—2s p}g L, el 8.

a a a
04.0(-9_ /\l_li*é...&}\qz*‘-o
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where Bj(t) = gAt; aj(t) = Cst, 0 S j S q-1, and that these complexes
are exact if (and only if) s is nowhere zero (see exercise 6, §1,
Chapter 5).

§2. Envelope of holomorphy

In this section we wish to consider the following problem: Given
a domain Q in C" can we find a "maximal" n-dimensional complex manifold
ﬁ containing Q such that every analytic function on QQ has a unique
extension to ﬁ? Example 6 of §4, Chapter 2 shows that we cannot require
ﬁ to be a domain in C". It turns out that to solve our problem it is
best to work within the category of domains spread over e¢". It then
becomes possible to give a particularly elegant solution using the

formalism of sheaf theory. First we recall some definitions.

Definition 6.2.1. A manifold spread over C" is a pair (Q,m), where
Q is a connected, separable, Hausdorff space and m: Q + ¢" 1s a local

homeomorphism (not necessarily surjective). We call m the spreading of
Q in ¢".

Given a spread manifold (Q,m), the map m induces a complex
structure on Q. In the sequel we always assume that ) comes with this
complex structure. We also often refer to (Q,m) as "the manifold

M omitting reference to m. We remark that given a complex

spread over ¢
manifold Q there may exist many different spreadings of Q in c" all of

which induce the given complex structure on Q.

Suppose (R,m), (R',n') are manifolds spread over " and
8: Q + Q' 18 continuous. We say that 0 is a morphiem of spread manifolds
if 7'0 = v, That is, if 8 (Q,) = Q; for all x ¢ m(Q). Here we have set
o, =11, ar -t

of spread manifolds is analytic with respect to the induced complex

(x). The reader may easily verify that a morphism

structures and is also an open mapping.

Definition 6.2.2. Let R, Q' be manifolds spread over C" and
0: 2 + Q' be a morphism. We say that the pair (R',0) is an analytic
extension of Q1 1f every f ¢ A®) extends uniquely across  to an element
f e A@'). That is, there exists f ¢ A@') such that f = £8.
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Remark . We sometimes say that ' is an analytic extension of
Q if there exists a morphism 6 such that (Q',0) is an analytic
extension of Q in the sense of Definition 6.2.2.

pefinition 6.2.3. A manifold 0 spread over ¢" is called a domain
of holomorphy if for every analytic extension (R',0) of Q, 6 1is an
isomorphism.

Remark . The reader may easily verify that a domain Q in c" is
a domain of holomorphy according to Definition 6.2.3 if and only if it
is according to Definition 2.4.1.

We may now state the main result of this section.

Theorem 6.2.4. Let (Q,7) be a manifold spread over C". Then
there exists an analytic extension (ﬁ,e) of Q such that

1. Q is a maximal analytic extension of Q in the sense that if (5,7)
is any other analytic extension of ), there exists a morphism n: Q+0

making (Q,n) an analytic extension of Q.

2. 0 is independent of the spreading 7 of Q in C¢". That is, if
Tyis Tyt Q + ¢" are two spreadings of Q in Gn, compatible with the given
complex structure on f, then the corresponding maximal analytic exten-

sions @;, R, given by 1 are isomorphic.

Definition 6.2.5. We call for any analytic extension (ﬁ,e) of Q
satisfying the conditions of Theorem 6.2.4 the envelope of holomorphy
of Q.

Proof of Theorem 6.2.4. Our proof follows that in Malgrange [2].
Step 1. Existence of Q.

Let {f;} denote the set of elements in A(Q) indexed by the set I.
e let ¢l denote the vector space of all functions from I to C; addition
and scalar multiplication defined coordinatewise. Let U be an open
subset of C". We say that a map h = (hi): U -+ ¢I is analytic if each
component function hi: U+ C is analytic. As in §1 we may construct the
sheaf (OI.p,G“) of germs of analytic functions from ¢" to GI. Exactly
as in Example 14 of §1, (Ol,p) is a spread manifold over C" (of course,
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0I will not be connected). We shall show that the envelope of holomorphy
of Q may be represented as a connected component of OI. First we define
a morphism 6: Q » GI. Given x ¢ Q, choose an open neighbourhood U of x
in Q such that 7 restricts to a homeomorphism of U on m(U) c C". Set

6= (M7l n(U) 4 Q. For 1 eI, set Fy = £,6 € A(T(U)). Define

6(x) = (? ) € O where f denotes the germ of f at x. It is

clear from the definition of the topology on 0 that 6 is continuous and
8o defines a morphism of spread manifolds. We let Q denote the connected
component of OI containing 6(R) and set p = plﬁ. Thus (ﬁ,a) is a

manifold spread over c".

Step 2. (Q,0) is an analytic extension of Q. We show that each
£, € A(Q) extends uniquely to an element Ei € A(ﬁ). First observe that
for each 1 ¢ I we have a projection map m GI + @ which induces a
morphism ni' 0I + 0 of spread manifolds. Thus ny maps the germ of a
map of ¢" into GI to its ith. component. Let z ¢ Q and choose an open
neighbourhood U of z in Q such that plU is a homeomorphism. Set
Y = (ﬁIU)—l. Certainly m,y is a section of 0 over p(U) and we let Yy
denote the corresponding analytic function on p(U). We define ? U = yip.
This construction clearly defines an element f € A(Q) for each i e I.
Next we must prove that fie - f1 and that ?1 1s the unique element of A(ﬁ)
satisfying this relation. Uniqueness is obvious by uniqueness of
analytic continuation and the openness of 6() in Q. For the extension
property suppose x € ) and choose an open neighbourhood U of x such that
ﬂIU is a homeomotphism. Now O(x) = (T ) and ﬂi((f )) = f . Hence
£ 1(0(x)) = ((f. L )|ﬂ(U))p0(X) = (fi-ﬂ Iﬂ(U))ﬂ(X) - f 1 (x).

Step 3. Q is a maximal analytic extension of Q. Suppose that
(a.n) is any analytic extension of Q. Ye may repeatAthe construction of
Step 1 to obtain an analytic extension @ of 5, with @ a connected
component of OI. Observe that the construction used implies that 3
necessarily contains the image of by 8 in OI. Since ﬁ is definedﬁas
the connected component () in 0I it follows immediately that 6 = Q.

Hence 18 a maximal analytic extension of Q.

Step 4. 2 is independent, up to isomorphism, of m. We first
note that if § is an analytic extension of Q then every analytic map
F: Q » Gm, m 2 1, extends uniquely to 5. This follows by applying the

definition componentwise to F.
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Let us suppose that we are given two fpreadingf s Ty of Q with
corresponding maximal analytic extensions 8}1.01), 622.92). By Step 3
and the above remark, T, extends to m); ﬁl + ¢". We claim that ﬂé
spreads 61 in ¢". For this we first note that the tangent bundle 1n1
is analytically trivial since Ql is spread in ¢" by my. But if
T§1'= (ﬁ x C", it follows that we can take the derivative of ni to
obtain a map Dni: 61 + L(E",6™). Since ™, is a spreading it follows
that q(x) = Dﬂz(el(x)) is an isomorphism for all x ¢ . Hence we may
define an analytic map p: 2+ L(C",C™ by p(x) = q(x)-l, x e Q.
Applying our remark again we see that p extends to ;: ﬁl + L@E",c™.
Form the composite maps p.Dni, Dni.p (composition in L(C™,C™)). We see
that both compositions are analytic and equal to the identity on 6 ).
Hence, by uniqueness of analytic continuation, they are equal to the
identity on the whole of Ql. It follows that Dn2 is invertible on 91
and so, by the inverse function theorem, ﬂi defines a ipteading of Ql

in ¢n, compatible with the given complex structure on Ql.

a
«“ 8 8, .
~ 9% 1
o Q 9,
n L )
2 2 2
¢I’I

Now (51,61) is an analytic extension of (Q,ﬂz), where we chooge the
spreading of Ql given by ni. By the maxima{ity Etopetty of (92,02)

it follows that there exists a morphism a: Ql -+ 92 satisfying uel

The map a is unique by uniqueness of analytic continuation. We may now
repeat the above constructions to obtain a morphism B: (ﬁz,ni) - (ﬁl’;l)'
It remains to prove that a and B are inverses of one another. This
follows, again by uniqueness of analytic continuation, once we have

noticed that

Ba(1(x)) = 8;(x); aB(8(x)) = B85(x), x € Q. n}
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Corollary 6.2.5. Let Q be an analytic extension of Q. If Q 1s
a domain of holomorphy, 5 is the envelope of holomorphy of Q.

Proof. Let Q denote the envelope of holomorpby of Q given by
Theorem 6.2.4. If § is a domain of holomorphy then 0 1s isomorphic to
. But Q 1s a maximal analytic extension of i and hence of Q. It

follows that { is the envelope of holomorphy of Q. 0
Remarks.

1. The map 8: 2 + Q constructed in Step 1 of the proof of Theorem
6.2.4 will not be injective unless A(Q) separates points in Q. This

requirement is fulfilled of course if Q is a domain in c".

2. It should be noticed that the proof of Theorem 6.2.4 works for
any subset of A(R). In particular, it gives us the maximum domain of
continuation of any analytic function defined on , representing it as

a manifold spread over Q".

3. It should be appreciated that Theorem 6.2.4 is very much an
existence and uniqueness theorem that gives no information about how to
construct and represent envelopes of holomorphy in practice. Of
course, our existence proof is very formal and elemenatary and not too
much should be expected. In this regard it should be compared with the
classical continuation proof such as is given in Hormander [1; Theorem
5.4.5).

4. The envelope of holomorphy of a manifold spread over ¢ may also
be represented as the spectrum of the algebra A(R). That is, the
envelope of holomorphy is isomorphic to the space of non-zero continuous
homomorphisms of A(Q) into @. For this approach to the construction of
the envelope of holomorphy we refer to Gunning and Rossi [1].

5. Finally we remark the fundamental result that a manifold spread
over an is a domain of holomorphy if and only if it 1s holomorphically
convex and if and only if it is isomorphic to its envelope of holomorphy.
In particular, every domain of holomorphy is a Stein manifold. Proofs
of these results, which use pseudo-convexivity methods, may be found in

Gunning and Rossi (1) and Hormander [1].
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Exercises.

1. Let (Q,7) be a manifold spread over C". Show that if we let 5
denote the quotient space of  defined by the relation "x equivalent
to y iff x and y cannot be separated by elements of A(Q)", then

A) 5 is naturally a manifold spread over c".
B) A@) separates points in .

C) The envelopes of holomorphy of Q and fi are isomorphic.

2. Prove that a holomorphically convex manifold spread over t" is a

domain of holomorphy (Hint: Follow the proof given in Chapter 2).

3. Let (Q,m) be a manifold spread over C" and suppose Q # ¢". Given
a compact subset K of Q, define d(K) = inf{|jz-n(g)}|: z ¢ 3(nQ), ¢ € K}
(see also §4, Chapter 2). Prove that if (Q,n) is a domsin of holo-
morphy then d(K) = d(i) for all compact subsets of Q. Show also that
if (Q,m) is finitely sheeted and d(K) = d(ﬁ) for all compact subsets K
of 2, then (Q,7) is holomorphically convex and so a domain of holomorphy
(the non-finitely sheeted case is more difficult and is treated in
Gunning and Rossi [1]).

§3. Sheaf cohomology.

In §1 we showed how sheaf formalism provided a unifying topological
framework for the description of a wide range of structures on
topological spaces. In this section we introduce a powerful computational
machine for the analysis of sheaves: Sheaf Cohomology. In essence our
methods allow us to apply the highly systematised and powerful methods
of homological algebra to problems in global complex analysis and
algebraic geometry. The ideas we describe were introduced into complex
analysis by H. Cartan (see H. Cartan [1,2]) and into algebraic geometry
by J.P. Serre (see J.P. Serre [2]). This use of sheaves and sheaf
cohomology has undoubtedly revolutionised and clarified both fields.

Our approach to sheaf cohomology will be to first develop a
rather abstract, non-computable, theory which is valid for sheaves
defined over paracompact spaces. We then relate this theory to the

computable &ech theory by means of Leray's theorem.
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Throughout this section we shall assume that all topological spaces
are paracompact and, as always, Hausdorff. '"Sheaf' will always refer

to a sheaf of abelian groups unless the contrary is indicated.

Suppose that 0 + F -2—>G —9—>H + 0 is a short exsct sequence of
sheaves over X. Given an open set U c X, it is easily seen that the
sequence

8y by
0 + F(U) —=>G(U) —>H()

is exact but that, in general, bU: G(U) » H(U) will not be surjective
(The section functor is left- but not right-exact). Just by reference

to the Cousin I and II problems (Examples 24, 25, §1) we see the
importance of finding a measure of how far the map by: G(U) + H(U) fails
to be surjective. A satisfactory solution to this problem is the primary
aim of sheaf cohomology theory. Our first task will be to describe a
class of sheaves for which it is true that short exact sequences of
sheaves transform into short exact sequences of groups under the section
functor. That is, we shall be describing a class of sheaves for which

sheaf and presheaf exactness are equivalent.

Definition 6.3.1. A sheaf (F,n,X) is said to be soft if for all
closed subsets K of X and sections s ¢ F(K), s extends to s continuous
gection of F over X. That is, the natural map F(X) + F(K) is surjective
for all closed subsets K of X.

Proposition 6.3.2. Let 0+ F 256 —9—)H + 0 be a short exact
sequence of sheaves over X. Provided F is soft, the corresponding

sequence of sections
0+ F(X) —25G(X) 2> H(X) + 0

is exact.

Proof. First we remark that we shall now generally use the
same notation for the map induced on sections and the corresponding
sheaf morphism. If it is necessary to distinguish them, we use a '"star"

superscript for the map induced on sections.
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We must show that for every s € H(X), there exists t € G(X) such
that b(t) = s. Since b: G + H is surjective, we may find an open
neighbourhood U, of every x ¢ X and t_ ¢ G(u,) such that b(t,) = slUyg.
Hence, by the paracompactness of X, we may find a locally finite open
cover {U1: i € 1} of X and family {t1 € G(Ui)} such that b(ti) - slUi,

i € I. Choose an open refinement {Vil of {Ui} such that Vi €U, 1el.

Consider the set A of pairs (g,J) where J c¢ I and, setting VJ = U Vj’
J

we have g ¢ G(VJ) and b(g) = sle. Now A# @ and is partially ordered
by inclusion. The requirement's of Zorn's lemma are clearly satisfied
and so A contains a maximal element, say (t,K). It is suffiicent to
ghow K = I. Suppose 1 ¢ I\K. Then b(t-t,) =0 on V(K) n Vi and so
there exists ry e F(V(K)n Vi) such that t-t, = a(r;). Since F is
soft, ry extends to Ui' But now (t,K) u (a(ri) +t1,1) extends (t,K)
contradicting the maximality of (t,K). Therefore K = I. 0

Corollary 6.3.3. Let 0+ F-25G b5 H -+ 0 be a short exact

sequence of sheaves over X. If F and G are soft so is H.

Proof. Let K c X be closed. We must show that every s ¢ H(K)
extends to a section of H over X. First observe that FK is soft. Hence
0+ FK —&9(;‘( —l’—>HK + 0 18 a short exact sequence of sheaves for which
FK is soft and, applying Proposition 6.3.2, there exists a section t of
G over K such that b(t) = s. Since G is soft, t extends to a section of
G over X. 0

a a
Corollary 6.3.4. Let 0 » Fo ——g—>F1 ——l—>F2 + ... be a long

exact sequence of soft sheaves over X. Then the corresponding complex

a9 8 4.
0+ Fg(X) —=>F, (X) F) —2> ..

is exact.

Proof. For 1 2 0, let K1 denote the sheaf Ker(ai). The exactness
of the given long exact sequence is then equivalent to the exactness of
the short exact sequences

a
0K »F —Hog 0,120,

i+1
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For 1 = 0, K0 - Fo and so is soft. Hence, by Corollary 6.3.3, K1 is
soft. By induction, every K1 is soft. Hence by Proposition 6.3.2,
the sequences

a
0 + K (X) + F (%) -—1-ﬂ—+Ki+l(x) +0

are all exact. But this is equivalent to the required result. 0

Definition 6.3.5. A sheaf (F,n,X) is fine if it admits a partit-
ion of unity of the identity morphism of F subordinate to any locally
finite open cover of X. That is, given a locally finite open cover {Ui}
of X, there exist sheaf morphisms ng: F + F satisfying

1. ng = 0 outside of some closed subset of X contained in Ui’

2, X n =1 the identity morphism of F.
el

Proposition 6.3.6. Every fine sheaf 1is soft.

Proof. Let F be a fine sheaf over X, K ¢ X be closed and
% ¢ F(K). By Lemma 6.1.12, we may find an open neighbourhood U of K in
X and 8 ¢ F(U) extending s. Take the open cover {U,X\K} of X and a
partition of unity {8,n)} of the identity morphism of F subordinate to
this cover. Observe that 8|K = I. Setting 8 = 0 outside U, we see that
0s is the required section of F. 0

Examples.

1. Let E be a smooth vector bundle over the differential manifold X.
Then Em is fine. Indeed, suppose that {Ui) is any locally finite open
cover of X and let {n;} be a C” partition of unity subordinate to {Ui)'
The ny induce sheaf morphisms ny: E_ -+ E and clearly {ﬂi) is a partit-
ion of unity of the identity morphism of E_ which is subordinate to {Ui)'
Hence E_ is fine. Consequently all the sheaves QP, g?’q that we have
defined on differential and complex manifolds are fine and, therefore,
soft. On the other hand, if E is the sheaf of holomorphic sections of a
holomorphic vector bundle E then E is never soft.

2. Let F be a sheaf on X. Let F* denote the sheaf of germs of not
necessarily continuous sections of F. Thus, F*(U) will be the set of
all sections of F over U. The sheaf F* is is obviously fine. In fact

it 1s also flabby: Every section of F* over an open subset of X extends
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to X. Flabby sheaves are used in the development of sheaf cohomology in
algebraic geometry where the spaces are not even Hausdorff, let alone

paracompact (see also the exercises at the end of this section).

We need one more definition before we can define the sheaf

cohomology groups of a sheaf on X.

Definition 6.3.7. Let F be a sheaf on X. A resolution of F is a
long exact sequence

d d
0+ F»Fy—2>F LsF) L5 ...

A resolution of F will be called soft (resp. fine) if each of the sheaves
Fi is soft (resp. fine).

Proposition 6.3.8. Every sheaf F on X has a fine resolution.

Proof. Let F* denote the sheaf of germs of not necessarily
continuous sections of F (example 2 above) and let €: F + F* denote the

corresponding inclusion map. Set Fo = F* and let ?0 = F*/F. We have

q
the short exact sequence 0 + F + F, -—£L>Fo + 0. Proceeding inductively,

let rjﬂ - (Fj)* and Fj+1

exact sequences

= *
Fj+1,Fj+1' For j 2 0 we have the short

Here, of course, ?0 = F. Hence we have the corresponding long exact

sequence

d
1

0+F-EsF —2F —Ls .,
where dj - €j+1qj and € = €g° Since the sheaves Fj are all fine, we

have constructed a fine resolution of F. 0

Remark. We call the resolution of F constructed in the proof of
Proposition 6.3.8 the canonical resolution of F.
d d
Let F be a sheaf on X and 0 + F L»Fo —°>F1 —-]L-> be the
canonical resolution of F. Associated to the canonical resolution of F

we have the complex
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We set
HOOLF) = Ker(dp); W(XLF) = Ker(d®)/In(ah ), p> 0 .

Each Hp(X,F) is an abelian group.

Definition 6.3.9. The group HP(X,F) constructed above is called
the pth. sheaf cohomology group of X with coefficients in the sheaf F.

Theorem 6.3.10. The sheaf cohomology groups of X satisfy the
following basic properties:
1. Given a sheaf F on X then
n P 2 FX.
B) HP(X,F) = 0 for p > 0 if F is fine.
2. 1f a: F + G is a morphism of sheaves over X then for p > 0 there

are induced homomorphisms aP; HP(X,F) > HP(X,G) satisfying
A) aO: HO(X,F) -+ HO(X,G) is precisely the map on sections
induced by a.
B) If a: F + F is the identity, then aP is the identity, p 2 O.
C) 1f a: F+ G, b: G + H are morphisms of sheaves over X then

for p > 0 we have (ba)p = pPaP; HP(X,F) -+ HP(X,H).

3. If0-+F -850 -ﬁLaH + 0 is a short exact sequence of sheaves on
X then for p > O there is a connecting homomorphism &: HP(X,H) -+ Hp+1(X,F)
satisfying

A) The cohomology sequence

0 0 1
0 » 1ox,F) 2 u%x,6) - u0x,H) S>ulx,F) 2 ...

is exact,

B) Given a commutative diagram of short exact sequences on X

0 F—256 by 0
AN P
0 A——>8 4 ¢ 0
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the corresponding cohomology diagram

0 0 1
0 —s 10, F) 2 —10x,6) o 0,1y S—ulex,F) 2 ...
0
N I R
0 0 s 1

0 —u0x,4) =—u%x,8) 4 —ux,0) —2sulx,A) < ...
commutes.

Proof. 1A is obvious and 1B follows from Corollary 6.3.4. In our
proof of 2 we follow the notational conventions of the proof of Proposition
6.3.8. Observe that a morphism a: F + G induces a morphism ao: Fo > Go
and so a morphism al: FO -+ 60‘ Clearly the diagram

0 > F Fo ;Fo >0
0 i G > Go > GO 0

commutes. Proceeding inductively, we see that for j > 0 we have

morphisms al: F, + G,,a,: F, + G, such that the diagrams
] R R |

3

0 ,Fj ->Fj ,Fj+1 — 0
[o o [
0 AGJ >Gj ,Gjﬂ >0

commute, Hence we have the commutative ladder of long exact sequences:

d dl
0 —F —ftoF —05F ——
a 80 81
d dl

o—_>G__E_> 0__0._) 1.__) e

and hence the corresponding commutative diagraom of sections:

% i
0 F) —S—F () ——F x) —— ...

ja 1 80 l 81
ds dy
0 —— 6(X) —E—Gy(X) 6, (x) > ..
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Suppose 8 € Ker(d?). The commutativity of the diagram implies
that d;(ajs) = ajdgs = 0, Hence aj(Ker(dz)) c Ker(d;). Similarly,
aj(Im(d;_l)) c Im(dj_l). Therefore, al induces a homomorphism
aj: HJ(X,F) +> HJ(X,G). Properties 2A, B, C all follow straightforwardly
from the definition of the induced maps on cohomology and the naturality

of our constructions and we leave their verification to the reader.

It remains to prove 3. Take canonical resolutions of the sheaves
F, G, H. As in the proof of 2 we have an induced sequence between
these resolutions and a corresponding commutative diagram of sections, a
typical portion of which is displayed below.

-1 -1
0 ——F, () 26, _ 02— L0 ——0

3 3-1 3
I I A
0 —— Fy —E— 6,00 —2— Hm ——0

3

ldj 41 ldj 3+ 1d’

a b
0 ——>Fj+l(x) —>GJ+1(x) ——>Hj+1(x) —>0

1 40 142 1 din 142 1 4

0 ——F 0 F—6 0 L—DH 0 —0

j+2 i+ j+2

Observe that the rows in the diagram are all exact aince the sheaves
FJ. Gj and Hj are all soft. We now show how to define the connecting
homomorphism &: HI(X,H) + W*1(x,F). Let a € HI(X,H) and
He Ker(dj) c HJ(X) be a representative for a. Now H = bj(G) for some
G € Gj(x). Since djbj - bj+1dj, we see that bj+1dj(c) = 0 and so there

441 (%) such that aJ*1(F) = 4,(6). But aj+2dj o -

dj+laj+1(F) = dj+1dj(c) = 0. Since aj+2 is injective it follows that
dj+1(F) = 0 and so F defines an element of Hj+l(X,F). We claim that
the class of F in Hj+1
H, G and F. Granted this, our construction defines the connecting
homomorphism §: HJ(X,H) > HJ+1(X,F). Suppose that H', G' and F' are

the result of another sequence of choices. Since H-H' defines the

exists F ¢ F

(X,F) depends only on o and not on our choices of

zero element of Hj(x,H), there exists H ¢ H _l(X) such that
H-H' = dj_l(ﬂ). Certainly H = bj-l(G) for some G ¢ Gj_l(x) and so
bJ(G -G' -dj_l(a)) = 0, Hence G-G' -dj_la = aj?, for some F € Fj(x).
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Now aj+1dj(l?) - djaj(l?) = 4,(6) ~d,(6") = atlm -ad(rr) = AE -

and so, since aj+1 ia injective, we have F -F' = dj(F). Therefore, F and
F' define the aame class in Hj+1(X.F).

The proof of 3A involves a straightforward diagram chase and we
leave details to the reader. To prove 3B we take canonical resolutions
of the sequences and form the corresponding 3-dimensional commutative
diagram of sequences of sectiona. Given a ¢ HJ(X.H). we construct, as
above, elements H, G, F such that the cohomology claases of H and F define
a and Sa respectively. It now suffices to observe that the class of
ij is nja and that wjﬂ. ¢jG. nj+1F is a sequence defining G(NJQ). Hence
6wj = wj+16. The commutativity of the squarea not involving § ia, of

course, immediate from 2C. 0

do,. 4, 4
Theorem 6.3.11. Let 0+ F £>Fy —>F) —=>F, —=>... be

a resolution of the aheaf F. Suppose that Hj(x,Fk) =0, >0, k 20.
Then

HOX,F) = Ker(dp); WX, = Rer (d%)/In(d* ), p > 0.

Proof. Let Kj = Ker(dy), j 2 0. The exactness of the reaolution

of Fiaequivalent to the exactness of the sequences
R
0~ Kj -+ Fj Kj+1 +0,320.
Take the long exact cohomology sequencea of these short exact sequences:

—HPX,Fy) » PR, ) S Pk - 0P GE) —

h] J+1

Since Hp(x.rj) =0, p> 0, we see that

A.... HP(X,K

R LAt
j+1) H (X’Kj)o P > Oi j 2 0 .

We alao have the initial portiona of the long exact cohomology sequences:

d*
—10(x,F,) —L w0,k

5.1
j+1) —>H(X,Ky) > 0

and so HI(X,Kj) = HO(X.K

and so

e /4O Now KKK ) = Ker(dd,))
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1 ~
B.... H (X,Kj) - Ker(d§+1)/lm(d§), j=20.
By repeated application of A and one application of B we see that
for p > 0

~ ,p-1 ~ ol ~
HP(X,F) - HP(X,KO) =H (x,Kl) ¥ ,..%H (X’Kp—l) = Ker(d;)/lm(d;_l) .

Finally the result for p = 0 follows from the exactness of the

sequence
0+ 10x,F) Eu0,F) » 1O,k 0

As an immediate consequence of Theorem 6.3.11 together with 1B of

Theorem 6.3.10 we have

Corollary 6.3.12. We can compute the cohomology of X with coeff-
icients in F using any fine (or soft) resolution of F. In particular,
Properties 1 - 3 of Theorem 6,3.10 determine the cohomology groups
HJ(X,F) up to isomorphism.

Remark. Suppose that ﬁj(X,F), j 2 0, are the groups of another
sheaf cohomology theory for X. That is, we suppose that the groups
RJ(X,F) satisfy all the properties listed in Theorem 6.3.10. By
Corollary 6.3.12, we have ﬂj(x,r) = HJ(X,F) for all sheaves F on X. It
can be shown that this isomorphism is natural - in particular, commutes
with connecting homomorphisms. For the general proof the reader may
consult Godement [1]. We shall prove the existence of this natural

isomorphism for the case of Eech cohomology later in the section.
Examples.

3. Let X be a topological manifold. Taking the canonical resolution
of the constant sheaf Z we may define the cohomology groups HP(x, z),
p 2 0. We may also define the singular cohomology groups Hging(x’ Z)
of X (see Spanier [1], Greenberg [1]). We claim that
WP (x, z) = Hging(x, Z), p 2 0. First, let S (U, Z) denote the abelian
groups of integral singular p-chains on the open subset U of X. Then
Spﬂh Z) = HOQZ(SP(U, Z), Z) is the group of singular integral p-cochains
on U. We let D = D, sP(u,z) + SPH(U, Z) denote the coboundary
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homomorphism. The assignment U -+ SP(U,Z) defines a presheaf SP(Z) on
X and we let §p(z) denote the corresponding sheaf, p 2 0. Since D

commutes with restrictions, we arrive at the sheaf complex

A.... 0~ z»g"(z)-—biegl(z)—i...
By definition,
B, (X,Z) = Ker(Dg)
14
ngmg(x,n) = Ker®@N)/Im(d* ), p > 1.

We claim that (A) is a fine resolution of Z. Exactness follows
since every point of X has a neighbourhood base of contractable open
neighbourhoods which have vanishing singular cohomology by standard theory.
To prove fineness of the sheaves §j (Z) first observe that §0(Z) = Z* -
sheaf of germs of discontinuous sections of Z. Hence §0(Z) is fine.
Suppose that p > 0 and s € SP(Z)(K), K c X closed. By Lemma 6.1.12, s
is the restriction of a continuous section 8 of gP(z) over some open
neighbourhood U of K. Let ll( be the (continuous!) section of §0(E) over
X defined by IKIK =1, IKIX\K 2 0. Since §P(2) is a sheaf of
_S_O(Z)-modules, 1,5 is a continuous section of §p(2) over X extending s.

K
We may now apply Corollary 6.3.12 to obtain the required isomorphisms

between HP(X,E) and Hzing(x,z). We conclude this example by making two
additional remarks. First, replacing Z by any abelian group G (or
commutative ring with 1), we can repeat the proof to obtain isomorphisms
between HP(X.G) and ngmg(x.c). Secondly, if X is a differential manifold
we may define the sheaves §2(2) of smooth (that is Cm) p-cochains on X.
It is a basic and well known fact in differential topology that the
complex 0 + Z - §2(Z) i>§‘,];(Z) + ... continues to define the singular
cohomology groups of X. In particular, the complex is a fine resolution
of Z.

4. Let X be an n-dimensional differential manifold and
0-+¢q EO —d—> ee l)Q_n + 0 be the de Rham complex of X. Since the
sheaves CP are all fine, the de Rham complex is a fine resolution of the

constant sheaf ¢. Let
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0 .0 1
HDR(X.C) = Ker d: C'(X) + C (X)

Ker d: cP(x) + ™)
Imd: ¢t 4 cP(x)

nga(x.c) - ,p21.

denote the de Rham cohomology groups of X. Corollary 6.3.12 implies
that

~

Ha(x,0) 5 wP(x,0), p 2 0.

In particular, HP(X,¢) = 0, p > n.
We showed in Example 3 that HP(X,C) ¥ HZin (X,8) and we shall now

describe an explicit isomorphism between HDR(x’c) and Hgina(x,a). For

p 2 0 we define a sheaf morphism 1P QP > §P(¢) by integration of chains:
IP(f)(c) = J £, £ € CP(U), ce 5,(U,0) .
c

By Stokes' theorem, we see that 1P commutes with the differentials d, D

and so we obtain a commutative ladder of exact sequences:

0 —s¢ ——>c® 45t 4, .

1 1 110 ]11

D

0 >¢ ——>s°(¢) 2>sl(¢) — ...

The morphisms 1P induce the de Rham isomorphisms between HBR(X,G) and
P
Hsins(x.a).

Finally we should point out that the de Rham isomorphisms actually give
an algebra isomorphism between the de Rham and singular cohomology
groups (the algebra structure on the de Rham and singular cohomology
groups is given by wedge and cup product respectively). The reader

may find a proof of this stronger statement in Warner [1].

5. Let X be an n-dimensional complex manifold. For p 2 0, we have
the Dolbeault complex

0+ QP »cP0 SycPl 3, cPn, g,

Since the sheaves gp’q are fine, p,q 2 0, we therefore obtain the
Dolbeault tisomorphisme
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= P, +1
pix, Py = Ker 3: P 3xy » cP M xy 420
m 3: c® 9Lz » P Yx)
In particular,
W0 - RerBcrim 2 Ma o,
m 3: ¢2 9 1xy & %9y

If E is a holomorphic vector bundle on X, we have the Dolbeault

complex
0+ P » ™0 2ucPrlr) 2s... 2scP(E) 0

and corresponding Dolbeault isomorphisms

3. cP»4 P,q+l
Hq(X,ﬁP(E)) ~ Ker 3. C'’"(M,E) » C (M,E) ,Pqz20 .
Im 3:

P,y » P (M E)

6. We have the short exact sequence 0 + 0 + M + M/0 - O of sheaves
over any complex manifold X. Take the initial portion of the long

exact cohomology sequence:

0+ 10(x,0) » ”Ox,M) -+ HOX,M0) > ul(x,0)
| i
AQX) M(X)

Given the data a ¢ HO(X,M/O) for the Cousin I problem on X, we see
that we can solve the Cousin I problem for a if and only if §a = O in
Hl(X,O). In particular, X will be a Cousin I domain if and only if
Im 6 = 0 in HI(X,O). Later we shall see that Hl(X,O) = 0 whenever X

is a Stein manifold and so Stein manifolds are Cousin I domains.

7. Let Z be an analytic subset of the complex manifold X. We have

the short exact sequence
01, 0x -+ 02 +0

of sheaves over X and corresponding initial portion of the long exact

cohomology sequence:
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—10x,0) » 10x,0,) Loul(x,1,) — ...

i 1
A(X) A(Z)

Suppose f ¢ A(Z). Then f is the restriction of an analytic function on
X if and only if &f = O, In particular, if Hl(x,lz) = 0 every
analytic function on Z extends to an analytic function on X. We shall

see later that this cohomology group vanishes whenever X is Stein.

Examples 6 and 7 above should convince the reader of the

importance of computing sheaf cohomology groups in complex analysis.

For the remainder of this section we develop 5ech cohomology
theory for sheaves over a paracompact space. As we shall see Lech
theory is computable - at least for all the examples that interest us -
and is also isomorphic to the sheaf cohomology theory we have already

constructed.

Let U = (U1: i € I} be an open cover of X and p be a non-negative

integer. Given 8 = (so.....s ) € Ip+1, set U_=U NeeeonlU . A
P 8 80 sP
p-cochain of U with values in F is a map c which assigns to each

8 € Ip+1 a section Cg € F(Us) and for which Cq is an alternating

function of s. That is, c = —c
30"'31"‘°j"’sp

0s1<jsp. Welet CP(U,F) denote the abelian group of all
p-cochains of U with values in F.

’
80...8j...81...8p

For p 2 0, we define a coboundary operator D: CP(U,F) -+ Cp+1(U.F)
by

p+l
(Dc)s = Z (-l)jcs 5 s .»B8E Ip+2 .
320 0 838y

2

A simple computation shows that D“ = 0. We let

ZP(U,F) = {c € CP(U,F): Dc = 0}; BP(U,F) = {Dc: ¢ ¢ P L(u,F))

denote the groups of p-cocycles and p-coboundaries respectively. Here
we take C-l(U,F) = 0 and BO(U.F) = 0. Since D2 =0, Bp(U.F) is a
subgroup of ZP(U,F) and we let HP(U,F) denote the quotient group
zP(u,F)/BP(U,F). We call HP(U,F) the pth. cohomology group of U

with values in F.
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Example 8. The data for the Cousin A (resp. Cousin B) problem
on a complex manifold defines a class in Hl(U,O) (resp. Hl(U,O*)).

Lemma 6.3.13. For any sheaf F on X we have

W, = FX.

Proof. Certainly z0(u,F) = WO(U,F). But if c ¢ 20(U,P),
ci —cj = 0 on Uij for all 1, ¢ I. Hence we may define f ¢ F(X) by
£lUy = cy. 0

Lemma 6.3.14. Let a:F + G be a morphism of sheaves over X. For
p 2 0 we have induced maps aZ: wP(u,F) + HP(U,G) satisfying

A. agz HO(U,F) -+ HO(U,G) is precisely the map on sections induced
by a.

B. If a is the identity map of F, then az is the identity, p 2 O.

C. If a: F+ G, b: G + H are morphisms of sheaves over X then
0 . pP,P
(ba)u bjags p 2 0.

Proof. Elementary and left to the reader. 0

Lemma 6.3.15. Suppose that F is fine. Then HP(U;F) = 0, p > O.

Proof. Let V = {Vj, j € J} be a locally finite open refinement

of U chosen such that there is a map ¢: J + I with ﬁj c U¢(j)’ J e J.

Choose a partition of unity {nj} for the sheaf F which is subordinate
to V. Let c ¢ ZP(U,F). For j € J, define bd € CP-I(U,F) by

j -
by, = 04f Ugn vj (1]

(-1)Pn,c 1IfU_nV, %0 .
i so-..sp_1¢(j) 8 ]

(Here njcso-.-¢(j) is defined to be zero outside Vj). A simple

computation shows that for all s € Ip+1 we have

@hy = nye,.
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Set b = 2 bj. Since {"j) is a partition of unity, we see that
jed

DB = c. Hence HP(U,F) = 0. 0

Remark. To prove this result we needed to know that F was fine
and not just soft. It is for this reason that we put "fine" rather
than "soft" in 1B of Theorem 6.3.10. See also Godement [1; Theorem
5.2.3, Chapter 2].

Theorem 6.3.16. Let F be a sheaf on X and U be an open cover
of X, For p 2 0 we have a canonical homomorphism
p(U): HP(U,F) + HP(X,F) satisfying

A. If a: F + G is a homomorphism then
wPu,F) —RU S wPx,
af .
wP,6) —2U) 5 4P (x,6)

commutes.

B. If Hp(Us,F) = 0 for all s € Ip+1 and p > 0, then p(U) is an

isomorphism (Leray's Theorem).

Proof. Undoubtedly the most elegant proof of this result uses
spectral sequences - see, for example, Godement [1]. Our proof is an
elementary diagram chase:

4 4o 4
Set F-—l = F and let 0 + F-l -—-)Fo —’Fl —> ... denote the

canonical resolution of F. For 8 ¢ Ip+1 we have the sequence of
sections

4 4o
0+F_(Ug) ——=Fyu) — ...

and so, taking the direct sum over Ip+1, we have for p 2 0 sequences

d
A 0+ cPW,F_) —LscPw,Fp) —O> ...
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Associated to each of the sheaves Fj’ j 2 -1, we have sequences

D,
B.... o*Fj(x) —L 0w, Fy st Fy » ...

Here D 1 denotes the inclusion map and Dj is the appropriate coboundary
operator for j 2 0. Since Fj is fine, j 2 0, the sequences B are exact
for § 2 0. Combining the sequences A and B we arrive at a commutative

diagram of sequences the initial portion of which is displayed below.

0 0 0
l d l d, J d
00— F ) —— Fx0 —— F® - >
D D D
l log 1 g 1 -1 g

0o — W, F_y —2 5O Fpy — 25l Fy —Ls .

D ln JD
l 0 g4 0 d 0 4

0o ——clw,F ) —EsclwFy) — 2l Fy —+

o

The columns of this diagram are all exact, save the first. We now show
how to construct the required homomorphism p(U): HP(U,F) + HP(X,F).

Let cj € 2P(U,F) represent the class a € HP(U,F). We construct
inductively a sequence cy € e cP” j(U F 1) which satisfies

= D , 0 <
p-1% p-3+1341> 0 =
Suppose that we have constructed Cys J sr<p+l., Then

Dp—rdr-lcr = dr_le_rcr - dr—ldt-Zcr—l = 0. Hence by exactness of the

(r +1)th. column, there exists c € Cp‘t—l(u,Fr) such that

r+l
Dp-r—lct+1 = dr 1" This completes the inductive step. Now
cp+1 € FP(X). Observe that D 1dpc " dpD__lcp+1 dpdp_1 = 0 and
so, since D_1 is injective, dpc " = 0. Therefore cp_'_1 € Ker(dp)

defines a class in HP(X,F) It is straightforward to verify that this

class depends only on a and not on our choices of CgreeesC Our

c .
P’ p+l
construction therefore defines the required homomorphism p(U).
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Property A of the Proposition follows immediately since the

sequence Cq,...,C is mapped by a into a sequence Cgres+sC

p+l
defining p(U) (a(a)).

p+l

If the conditions of B hold then rows, as well as columns, of
our diagram are exact (excluding initial row and column) and so, by

symmetry, we may construct an inverse for p(lU). O

Remarks .

1. We call a cover satisfying the conditions of 1B a Leray cover
(for F). Notice that the existence of a Leray cover for F may imply
that higher dimensional sheaf cohomology groups vanish. Thus, if

Uy = @, s ¢ Ip+1, P 2 Py, we see that HP(X,F) =0, p 2 Po-

2. It is clearly important to find Leray covers for a given sheaf F.
For example one can show, using a Riemannian metric, that every
differential manifold has a cover by convex open sets (Helgason [1;
page 54]). Since intersections of convex sets are convex and convex
sets are contractible, it follows that differential manifolds admit
Leray covers for the constant sheaves Z, IR, €, etc. At a much
deeper level, we shall show later that Stein open covers of a complex

manifold are Leray covers for an important class of (-modules.

3. The proof of Theorem 6.3.16 clearly works for any fine resolution
of F ~ not just the canonical resolution. We frequently use this

observation in the sequel.

Example 9. Let U= {“1} be an open cover of the differential
manifold X. We give an explicit computation for the map
p(l): HP(U cC) -+ HDR(X ¢) in case p = 2. First choose a C” partition
of unity {6 } of X subordinate to the cover U. Let {c k} € 22 ,e)
respresent the class g ¢ H (U,¢). Define {¢jk} € C w, CO) by

b T § AT

Cettainly we have DO({¢jk)) }). Again define

(¢} € cu,ch by

{cijk) (= {cijk

§ doojk .
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We have Dl({¢j}) - d{ojk]. Finally observe that d¢, = d¢; on U1
and s0 Y = (d¢k] is a well defined closed 2-form on X which representa
the class p(U) (a) in H%R(X,¢). The construction for p ¢ 2 is similar.

Proposition 6.3.17. Let U, V be open covers of X and V be a
refinement of U. Given a sheaf F on X there exists a canonical

homomorphism
pU, V) : HP(U, P + HP(U,F)

satisfying

1. The diagram  HP(U,F) ——219139——>HP(V.F)

P (X, F)

commutes, p 2 0.

2. 1f a:F + G is a morphism, we have
p(U,V)af = afp(U,V), p20 .

3. If Wis a refinement of V, we have p(U,W) = p(V,W)p(U,V).

Proof. Let V = {Vj: JeJ}, U= {U;: 1 € I} and fix a
refinement mapping ¢: J + I satisfying Vj cU X j € J. Given

~ Q3
c € CP(U,F), define $c e CP(V,F) by

s = oty 00y Var o7 (B00eer8p) € L

Since ; obviously commutes with the coboundary operators D, ; induces
a map ¢, HP(U.F) -+ HP(U.F). We claim that ¢, is independent of the
choice of ¢. Suppose that ¢' is another refinement mapping. We
construct a "homotopy'" operator H: Cp+1(U,F) + CP(V,F) between ; and ;.
To do this we first give J a total ordering. Then if 85 < ... < 8

P
and ¢ € Cp+1(U.F) we define
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- 13 :
(He)g jio 17 ag). 0084307 (8)) .- 0" (5)

Extend H to all cochains by requiring that H is alternating in s.
Computing we find that

~

HD+DH = ¢'-6 .

Hence, if ¢ € zP(U,F), we have (¢' —$)(c) € BP(V,F). Therefore ¢, = ¢
and we may set p(U,V) = ¢, for any choice of refinement mapping ¢. The
proofs of the remaining statements of the proposition are elementary

and we leave details to the reader. 0

An immediate corollary of Proposition 6.3.17 is that
{HP(U.F),p(U,U)} constitutes a direct system. Hence we may define

#P(x,F) = dirlimuP(u,F).

We call HP(X,F) the pth. Sech cohomology group of X with coefficients
in F.

By part 1 of Proposition 6.3.17, we see that for p 2 0 we have

canonical homomorphisms
X(W: HP(U,F) + ¥P(X,F)
x: ¥P(x,F) + uP(X,F) .

These homomorphisms satisfy the usual naturality properties. For
example, if a: F + G 18 a morphism of sheaves we have induced
homomorphisms sz ﬁp(X,F) -+ ﬁp(x,c) satisfying the conditions of part
2 of Theorem 6,3,10 and

xXP = XaP , p 2 0.

Theorem 6.3.18. For paracompact spaces, ech and sheaf
cohomology groups are isomorphic.

To prove this result, it is sufficient to show that the éech
groups satisfy all the properties of Theorem 5.3.10. In view of what

we have proved already, it remains to construct a long exact cohomology
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sequence for ﬁ. Actually, we shall prove a little more. We shall
show that Cech and sheaf cohomology theory are canonically isomorphic
with canonical isomorphisms being given by the maps X. In particular,

we shall show that the maps x commute with connecting homomorphisms.

Theorem 6.3.19. Let 0+ F ~25G «25>H + 0 be a short exact
sequence of sheaves on X. For p 2 0 we have a connecting homomorphism
8: §P(x,H) ﬁp+1(x,F) satisfying

A. The &ech cohomology sequence

) Vo vl
0+ ¥0x,F) 2 ¥0x,6) 2—H0(x,H) <S> ¥ (x,F) 2 ...

is exact.

B. The diagram

v0 v0 vl
0 ——¥0x,F) 2 ¥0x,6) L ¥0(x,H) S ¥lix,F) 2 ...

LU ko

0 —u0x,F) 2 5 u0x,6) 2 u0x, 1) —Lsutx,F) 2 ...

commutes.,

Proof. Let U be an open cover of X and p 2 0. Set
EP(U,H) - bcp(U,G). Then the sequence

0 + cP(U,F) » cP,G) » CPW,H) + 0

is exact. Since DEP—I(U,H) < CP(U,H) we may define the "cohomology"
group HP(U,H) to be EP(U,H)/ﬁp(u,H). Exactly as in the proof of 3
in Theorem 6.3.10 we may define a connecting homomorphism

3: HP(U,H) + HP+I(U,F) and obtain a long exact sequence for the
cohomology groups H*(U,F), H*(U,G), H*(U,H). Everything commutes
with direct 1limits and so we arrive at the long exact cohomology
sequence

gp+1

vp+l
oo > BPxH) — BPH(x,F) 2 WP (x,6) 22— AP (x,H) » ...
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We claim that ﬁp(X,H) & ﬁP(X,H). For this it suffices to show that 1if

h € cP(U,H), we can find a refinement U = {Vj: jeJlof U= {Ui: ie1}
and refinement map ¢: J + I such that $h ¢ CP(V,H). Since X is
paracompact, we may assume that U is a locally finite cover of X. Let
W= {w;} be a refinement of U such that W cU;, 1 eI Choose an

open neighbourhood Vx of each point x € X such that

a) If x e Wy, Vx c Wy and if Vx n wj ¢ @, then Vx c Uj'
1
b) If x € Uy, s ¢ IP, then V, < U,.

Observe that a) and b) continue to hold for open neighbourhoods

of x contained in Vx’ Since b: G + H is surjective we may, shrinking
x X o
vx if necessary, find g, € G(Vx) such that bgs hslvx. Choose a
refining map ¢: X + I for the covers V = {Vx: x € X} and (4 satisfying
= P+1

X € w¢(x) for all x € X. Let t (to,...,tp) € X and suppose
V. # @. By choice of ¢, v':0 n "¢(tj) ¢@, 0s j sp, and so by a)

v 0 s j s p. HenceV cl , where we have used the
tg  ¢(t)

ty © U¢(tj)’
abbreviated notation ¢(t) for ¢(t0)...¢(tp). For t ¢ XP+1, we define
8, € G(V,) by

Clearly bg, = h¢(t)|vt' Hence ¢h € CP(V,H).

All that remains to be proved is statement B of the theorem. For
this we take canonical resolutions of F, G and H, fix an open cover U
of X and take appropriate complexes of cochains over each term in the
canonical resolutions as in the proof of Theorem 6.3.13. We obtain a
3-dimensional commutative diagram of sequences. It is then a straight-
forward diagram chase to verify that the definition of
3: fiP(U,H) » HPYL(U,F) 1s compatible with that of &: HP(X,H) - WP*L(x,F).
Essentially we have to check that the maps p(U) map the defining
sequences for 5 down to defining sequences for §. We omit the lengthy
details. Finally take direct limits. u}
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Remarks .

1. An alternative construction of the long exact sequence of &ech
cohomology, based on sheaves of cochains (cf. Example 3) may be found
in Godement [1].

2. The paracompactness assumption implicit in Theorem 6.3.19 is
essential: Cech cohomology need not be exact for non-paracompact
spaces. However, Leray's theorem continues to hold and this fact was
exploited by Serre in his foundational paper on coherent sheaves in

algebraic geometry (Serre [2]).
We end this chapter with some important examples and computations.
Examples .

10. Let X be a differential manifold with structure sheaf 9 and let
9* denote the (multiplicative) sheaf of groups of units of 9. We
claim that the group CLB(X) of isomorphism classes of complex line
bundles on X is canonically isomorphic to Hl(X;?*). Let £ ¢ HI(X,Q*).
Now Hl(x.g*) ~ ﬁl(XJ9*) and so we may find an open cover U = {Ui} of X
and (¢1j) € zz(u¢?*) such that y(U) maps the cohomology class of {011}
to £. The cocycle conditions on {¢ } imply that °1j°jk bypo
i,j,k ¢ I. Since 011 13

transition functions for a complex line bundle L(£) on X. We leave it

+¢° ™ GL(l C), we see that the ¢1j are the

to the reader to check that L(£) depends only on £ and not on our
particular choice of cover or cocycle and that the map £ + L(£) 1s an
{somorphism of H!(X,@*) with CLB(X).

We may use this isomorphism between CLB(X) and ﬂl(xga*) to define an
important topological invariant of complex line bundles. First

observe that we have an exact sheaf sequence
0 +Z _1_,9 EXP ,9x 4 0 .

Here i: Z + 9 denotes the inclusion and exp: P+9* is defined by
expu(f)(x) = exp(2nif(x)), x ¢ U, f € 9(V). The surjectivity of exp
follows by noting that expy has inverse (2mi)~ log on simply connected

open subsets U.
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Consider the following portion of the long exact cohomology sequence
oo > 1 x,® > BLx9%) S5 ni(x, 2) > H2(x,9) +

Since 2 is a fine sheaf, Hl(x,a) = Hz(x,y) = 0 and so

S: Hl(XJB*) L] az(x, Z). Suppose L € Hl(x,g*) is a complex line bundle.
Define c, (L) = -8(L) € Hz(x, Z). We call c,(L) the first Chern clase

of L. We gsee that L = ¢ - the trivial line bundle - if and only if

cl(L) = 0. Fix an open cover U = {U : 1 € 1} of X such that all
intersections Ug, s € IP+1, p 2 0, are contractible. For example, we

can choose a cover of X by contractible open sets (see Remark 2 following
Theorem 6.3.16). Applying Leray's theorem, we can see that

w2(x, z) » n2(U, Z) and H'(X2*) » HL(U@*). Given L € CLB(X) we may
therefore find transition functions {¢1j} for L defined relative to

the cover U, Every intersection U, , is simply connected and so we may
The cocycle conditions on {¢ij}

1)
choose a branch of logd>1.1 on each Uij'

imply that for all i,j,k ¢ I,

c - (21r1)-1(log¢ij + log¢Jk + log¢k1) € Z,

13k

and so {c } € 22(U Z). By the construction of the connecting

13k

homomorphism, it follows that (c
¢, (L) € n? X, Z).

} is a representative for

11. Let X be a complex manifold. As in Example 10 we have a short

exact sequence
0+ z 150 &2, 0% 5 0

of sheaves on X and we see that HI(X,O*) is isomorphic to the group
HLB(X) of holomorphic line bundles on X. We have the commutative
diagram

——»Hl(x.O) —anl(x,O*) L>112(x. Z) —> ...

| J ll

———>H1(x,9) ———»ul(x,ﬁ*) —6—>H2(X, Z) ——> ...
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Here the vertical maps are induced by the natural inclusions of 0 in

, 0% in@* and the identity map of Z. Hence, as in Example 10, the
map §: Hl(X,Ok) -+ nz(x, Z) is minus the first Chern class map.
However, the map will generally not be an isomorphism as neither of
Hl(X,O) and HZ(X,O) need vanish. This is just a reflection of the
fact that a holomorphic line bundle may be trivial in CLB(X) but not
trivial in HLB(X). The existence of a Leray cover for (* is now a
non-trivial matter as it depends on being able to find covers which are

Leray for 0 as well as Z.

12. We continue with the notation and assumptions of Example 11.
Let j: Z - G denote the inclusion map of constant sheaves. We have
the commutative diagram

HLB(X) ~ Hl(x,o*) 6—-)}12()(, Z)
Js

n(x,0)

j

2
2 (X,0)

Here 0: H X,0%) » HDR(X C) is defined to be the composition of § with
j and the canonical isomorphism between u? (X,¢) and H (X C). We let
cl(L)c = -0(L) € HDR(X,G), L € HLB(X). We are going to give an
explicit representation of cl(L)¢ as a closed 2-form on X. Suppose
that {¢ij} are the transition functions of L € HLB(X) relative to

some open cover U = {Ui} of X. As in Example 10 we may and shall
assume that all intersections Uy are contractible. As we showed in
Example 10, cl(L) € uz(x, Z) is represented by the cocycle

{c } = {(Zﬂi)-l(log¢

19k + logd

+ log¢ki)} € ZZ(U.Z).

13 1k

Let us assume for the moment that there exist {a;} € cO(u,2*) such that
2
lo,y17 = ay/ay

(This amounts to claiming that L*®L* = ¢ in CLB(X)). As in the proof
of Theorem 6.3.16 (see also Example 9), we first construct
{fi} € CO(U,_Q]') such that
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1
‘n—idlog¢1j - f,-f .

3

For this we may take fi 21 Blogai, since

log'1>1.1 + log¢ = logaj - loga,

1]

and so
d1°8¢ij = 31034)1_1 = 3logaj - dloga,.
Our required 2-form representing cl(l‘)m is then given by
v o= - {agy)

- {557 9dloga,}

2'"1

i =
- (- g Balogai}.

Notice that cl(L)c is represented by a (1,1)-form. In Example 15 we
shall show that every "integral" (1,1)-form is the Chern class of some
holomorphic line bundle. The reader should also observe that we do
not really need to assume that the domains U, , are simply connected

1]

as the indeterminancy in logd,, drops out when we take exterior

1]

derivations.

Finally, let us justify our assumption that L*aL*x ig
isomorphic to the trivial line bundle. First observe that LQOI-.; is
the space of Hermitian forms on L,, z € X. Now any convex combination
of positive definite Hermitian quadratic forms is positive definite.
Therefore, taking trivialisations of L over U, we may choose a smooth
section of L*®L* over each U1 which defines a positive definite
Hermitian form on the fibres. Glueing together using a smooth partit-
ion of unity we obtain a globsl section of L*®L* which restricts to
a positive definite Hermitian form on the fibres. Hence we have

obtained a non-vanishing smooth section of L* @ L*.

13. We compute the lst. Chern class of the hyperplane section
bundle H of Pl((l). Let U = (UO'UI} be the open cover of rl(e)

corresponding to the canonical atlas. The transition functions for
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the hyperplane section bundle are given by
001(20’21) = 21/30

and setting
2 2 2
a5(zg,2) = |zo| /(|zo| + lzl| )

81(20121) - |21I2/(lzo|2 + Izllz)

we see that MOIIZ = allao. Hence our representative u for cl(}l)Ct is
given by py = {ui} = {- -51;'- 3510gai}. Setting zO/zl = t, we see that

i 2
w() = - 331og (1/ (L +1t]“))
- 31; a+1e1H 4aedt .
Now for compact Riemann surfaces, integration defines a canonical

isomorphism HZ(X,(I) s ¢ and so we may regard cl(“)c as lying in C.
Thus

c(H)-I u-[u
1%%e Pl (@) ¢ !

i 2,-2 =
- 2—“1 (1+]t]%) “dtde
[
0 0277
- %II (1+t2)-2rdrd6
00
= 41,

Since nz(x, Z) % Z for compact Riemann surfaces, we have proved
cl(H) = 4+1. Our choice of sign for c, was made precisely so that the
hyperplane section bundle of Pl(c) had positive Chern class...

14, Let L be a holomorphic line bundle on the compact Riemann
surface L and suppose that M*(L) # @. Recall (proposition 1.5.7) that
if 8 € Mk(L) then deg(div(s)) is independent of s and that the degree
of L, deg(L), is defined to be deg(div(s)). Using the canonical
isomorphism of HZ(M, Z) with Z we may regard cl(L) as lying in Z .
We claim that c,(L) = deg(L). Fix s € M*(L) and let
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div(s) = ? n;.z;. Choose a finite cover {Uiz i=1,...,m} of M
satisfyin;-l

a) LIUi is holomorphically trivial.

b) zy € Uy, 1si<n.

c) There exists an open neighbourhood vy of each z, such that

V1 is biholomorphic to the unit disc in C and vyn v U - @.
y1 3

Denote the corresponding set of transition functions for L by
{¢jk: ujk > G'}. Let aj denote the local representative of s on Uj'
Then ’j’ s, will be holomorphic on Ujk' j #k, and

2 2 2
|¢jk| Isel® = |°j| on Ujk .

For 1 > n, set g8y * Iailz. For 1 < n, we may, using bump functions,
modify |91|2 to obtain a C positive function gy on U, satisfying

2
gi|ui\v1 = Jsyl” .
In particular, gilavi - Isilz and, by condition c) above, we will have
) |2g = g, on U, for all j,k
Jk! Bk 3 jk vt
Hence, by Example 12, we have
ey, = (L) = - [ 3310gg7)
1**¢ 1 m 88y
1
- 5 IM 531033j
1 9 =
c (L) = ey ) I 3dlogg, -
vy

Now ddlogg, = 5310331 and so, by Stokes' theorem,

n
1
c, (L) = — 2 I dlogg
1 2ni i=1 avi i

L E [ d1ogs
2ni {=1 ,avi i
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- 2 ny, by the residue theorem.
i=1

= deg(L).

15. We showed in Example 12 that the Chern class of a holomorphic
line bundle on X could be represented, via the de Rham isomorphism,
by a closed (1,1)-form on X. We shall now show that every integral
closed (1,1)-form is the Chern class of some holomorphic line bundle
on X (modulo torsion). Let j: Z -+ C denote the incluaion map of
constant sheaves and Hll;l’{l(x,c) denote the subgroup of H (X,(I) admitting

representatives by closed (1,1)-forms. Set ulr! (Xx,2) -“Dl,{ (X,8) n jH (X, z)
We claim that cl(ﬂl(X,O*))c - ul'l(x, Z). Let i: Z + 0, k: C » 0
denote the inclusion maps of the constant sheaves Z , C in 0. We have

the commutative diagram
!
ut (X,0f) ———=— > 1§ (x z) —1 u (x 0)
H (x,c) .
Since we already know that cl(H (X, 0*)) l’l(x, Z), it is enough

to prove that kHDR (X,8) = 0. Taking the de Rham and Dolbeault
resolutions of ¢ and 0 we have the commutative diagram

0 ¢ >0 >ct >gz—d—>...
3,.0,2 3
o—>0—*g =50 ——>g ...

where the morphism Q p »> CO'P is just projection of p-forms onto
the (0,p)-component. The map kP: HP(X,8) + HP(X,0) is therefore
represented by

QP: Ker(d) ——> Ker(3)
N N
cP(m) %Py
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Since Q2 maps (1,1)-forms to zero it follows that the image of
H;&l(X,G) in Hz(X,O) is zero.

16. Associated to the divisor sequence 0 + 0% > M* + D + 0 on a

complex manifold X we have the long exact sequence

0+ n°(x,0*) > Ho(x,M*) -+ uo(x,v) —£L>u1(x.o*) > ...
I | L] i
A* (X) M* (X) D(X) HLB(X)

Recall from §9, Chapter 5, that we have a homomorphism
[ J: D(X) + HLB(X).
By the definition of § in dech theory it is clear that
§(d) = -[d], d € D(X).

So we gsee again that a divisor d is the divisor of a meromorphic
function if and only if [d] is a holomorphically trivial line bundle.
Recalling from Example 12 that the Chern class map % HLB(X) -+ HZ(X,ZZ)
is defined to be minus the connecting homomorphism 6: HLB(X) -+ HZ(X,Z ),
we see that cl([d]) = 66(d). In summary, we see that for a divisor d

to be the divisor of a meromorphic function there are precisely two
obstructions. Firstly a topological obstruction: cl([d]) must be zero;

secondly an analytic obstruction: [d] must be holomorphically trivial.

For the remainder of this example, we shall assume that X is projective
algebraic. We shall show later that every holomorphic line bundle on
X admits a non-trivial meromorphic section. This clearly implies that
the image of Hl(x,O*) in ul(x,M*) is zero and so we obtain the exact
sequence

0 + A*(X) =+ M*(X) + D(X) -§—>HLB(X) +0.

Hence, HLB(X) = D(X)/L(X), where L(X) is the group of linear equivalence

classes of divisors on X.
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From Example 14, we see that given N ¢ Hl'l(X,ZZ), there exists

d € D(X) such that ) ((d))g = n. It may be shown (see Griffiths and

Harris [1]) that d defines a class in H2 2(x zZ) which is the Poincare
dual of N with respect to the pairing “2 z(x Z) x H (X,Z) -»H (X Z)YSZ.
So we have a special case of the Hodge conjecture due to Lefschetz:

Every class in Hl’l(x,z) has a Poincaré dual represented by an integral

combination of analytic hypersurfaces in X (modulo torsion).

Finally let Pic(X) denote the subgroup of HLB(X) consisting of
holomorphic line bundles which are trivial as complex line bundles.
Thus Pic(X) = Ker(cl). Since X is compact it is easily seen from the
cohomology sequence of 0 + Z + 0 —<XB5 0% 4 0 that
Pic(X) = Hl(x,O)/Hl(X,ZZ). Furthermore it can be shown that Pic(X)
has the natural structure of a compact connected complex Lie group.
That is, a complex torus. Pic(X) is called the Picard variety of X.
The Picard variety is an important birational invariant of X. It is
an Abelian variety (for this it is sufficient that X be Moishezon).
Proofs of these statements, together with further references, may be
found in Ueno [1]) and Griffiths and Harris [1].

Exercises.

1. Verify that
a) HP(D,O) =0, p21, for every domain D in C.

b) HP(,Q%) = o, p21, q 20, for every open polydisc D in C".

2. Let G be a group, not necessarily abelian. Show how to define
ﬁl(x,c) and prove that ﬁl(X,GL(n,G)) is isomorphic to the set of

igsomorphism classes of n-dimensional complex vector bundles on X.

3. Prove that the map p(U): Hl(U,F) -+ HI(X,F) is injective for all

open covers U of X.

4. Verify that the de Rham cohomology groups of a differential
manifold are topological invariants (as opposed to differential
topological invariants) without using the isomorphism between singular

and de Rham groups.
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5. Let X be a Riemann surface. Verify that the sheaves D and M/D
are soft, Is this result true for general complex manifolds?

6. Show that Pic(X) = {¢} in case X is any domain in G or an open
polydisc in Q™.

7. Prove that cl('rPl((I)) =42,

8. Hz(Pn(G),E) = Z . Let H denote the hyperplane section bundle
of P"(C). Prove that cl(H) generates Hz(Pn(G),E).

9. Let f: X * Y be holomorphic and L ¢ HLB(Y). Prove that
f*(cl(l-),I) = cl(f"L)c.

10. Let T = C"/A be an n-dimensional complex torus with period
lattice A and suppose that L(H,m) is a holomorphic line bundle on T
(for notation, see §9, Chapter 5 and recall that H is an Hermitian form

on " whose imaginary part is integral on A x A). Prove

a) The function a(z,t) = exp(-ﬂ}l(z,z))|t|2 onC" x C 1s
invariant under the action

(z,t) + (z+\,exp(-T(2Re(H(z,A) +H(A, )N ||, A € A.
Deduce that a induces a smooth map a: L(H,m) + R which is
quadratic on fibres (see also Exercise 6, §9, Chapter 5).

b) The first Chern class of L(H,m) is represented by the form
- 2% 93logexp(-TH(z,2)) = —;—H .

c) Every l-dimensional complex torus admits a holomorphic line
bundle of Chern class +1 (Integrate %H over a period
parallelogram) .

11. Recall that a sheaf F of groups over a topological space X (not
necessarily paracompact) is flabby if for all open subsets U of X the

sequence F(X) + F(U) + 0 is exact. Prove

a) If 0+F+G+H + 0 is an exact sequence of sheaves over X
and F is flabby then the sequence is presheaf exact. If, in
addition G is flabby, deduce that H is flabby.

b) If X is paracompact, then F flabby implies F soft.
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12. Let X be a closed subset of the topological space Z and F be a
sheaf of groups on X. As in exercise 4, §1, let ? denote the trivial
extension of F to Z. Prove that for p 2 0, HP(Z,F) ~ HP(X,F).

(Look at the trivial extension of the canonical resolution of F).

13*%, Let f: X » Y be a holomorphic map between complex manifolds and
F be a sheaf of Oy-modules on X. For p 2 0, let Rpf*F be the sheaf
of OY-modules on Y associated to the presehaf U + Hp(f-l(u),F). Show
that for any exact sequence 0 + F » G + H + 0 of Oy-modules on X, the

induced sequence
1 1
0+ £,F » £,6 + f,H > REF >R EG>...

is exact.

14. Let f: X - Y be a homeomorphism between topological spaces X and
Y, F and G be sheaves on X and Y respectively and a: G + F be a morphism
of sheaves covering f_l. Show that for p 2 0, we have naturally

induced homomorphisms
£(a)*: WP(Y,6) + HP(X,F)

v
(Use Cech theory).

15. Let f: X + Y be 8 continuous map between topological spaces X,
Y and F be a sheaf on Y. Show that there exist homomorphisms
fx: HP(Y,F) Hp(x,f_lF) satisfying

a) If f = Id, then f* = Id.
b) If g: Z + X is continuous then (fg)* = gkf*,

c) The construction of f* is compatible with the construction
of Ql4, in case f is a homeomorphism and a is the inverse of
the natural map f: £IF 5 F,
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CHAPTER 7.  COHERENT SHEAVES

Introduction.

In section 1 we define coherence for sheaves of (-modules and
prove Oka's theorem. In section 2 we prove Cartan's theorems A and B
for Stein manifolds assuming exactness of the 5-sequence. The remainder
of the Chapter is devoted to applications of Theorems A and B. We
prove Cartan and Serre's finiteness theorem in section 3 and Grauert's
finiteness theorem for coherent sheaves on 8.L.p. domains in section 4.
Using the finiteness theorem of Cartan-Serre, we prove Serre's theorems
A and B for coherent sheaves on complex projective space in section 5.
We give a number of applications including Grothendieck's theorem on
the splitting of holomorphic vector bundles on the Riemann sphere.
Finally in section 6 we prove Kodaira's embedding theorem, following
Grauert, and conclude by showing that complex tori that admit a Riemann

form are algebraic.

§1. Coherent sheaves.

Throughout this section we shall be studying sheaves of (-mod-
ules on a complex manifold M (Here, as in the sequel, we usually drop
the subscript "M" from the Oka sheaf OM). In future we call a sheaf of
0-modules an analytic sheaf. We have already seen some examples where
algebraic conditions holding at a point continue to hold in a neighbour-
hood of the point. Thus the condition that germs of analytic functions
be relatively prime 18 an open condition (Proposition 3.4.2). Another
important example came from the theory of analytic hypersurfaces where
we showed that if Z was an analytic hypersurface in M with lz(Z) = (gz),
then Iy(Z) - (gy) for y in some neighbourhood of z (Theorem 3.5.16).

The main aim of this section will be to describe the class of coherent
analytic sheaves for which this type of behaviour is characteristic.
For example, we shall show that if F —2»G —B—*H is a sequence of
coherent sheaves with ba = 0 and 1f the sequence is exact (at stalk
level) at x € M, then it is exact in a neighbourhood of x. Of course,
if we wish to use topological methods to get global results then our
local results need to be framed in terms of open sets - not points -

and this 18 why coherence is such an important concept in the cohomology
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theory of sheaves. Our proofs will be close to those in the original

works on coherence by H. Cartan [1,2] and J.P. Serre [2].

Definition 7.1.1. An analytic sheaf F on M is said to be of
finite type if we can find an open neighbourhood U of every point x in
M and a finite number of sections B1seeerBy € F(U) such that

{sl,y""’sk,y} generates Fy as an Oy-module for every y ¢ U.

Example 1. The sheaf of sections of a holomorphic vector
bundle on M is of finite type.

Proposition 7.1.2. Let F be an analytic sheaf of finite type
and fl,...,fp be continuous sections of F defined over some open

neighbourhood of x ¢ M such that f I & x generate Fx. Then

1,x’ P

fl,y""’fp,y generate Fy for y in some neighbourhood of x.

Proof. Since F is of finite type we can find an open
neighbourhood U of x and sections sl,...,sk e F(U) such that
sl,y""’sk,y generate Fy for y ¢ U. By assumption, there exist
84 .x € 0x such that

si,x = jgl aij,xfj,x’ i=1,...,k .

Choosing representatives for the germs a x* Ve see that on some
’

1)

neighbourhood V of x we have

8y = a, f,, 1 =1,...,k.
i jil 1373

Hence for all z ¢ V we have

8 0

P
= a f .
i,z jzl ij,z27° 3,2
For q 2 0, recall that 09 denotes the p-fole direct sum of 0
and that 09 is equal to the sheaf of germs of ¢9-valued holomorphic
functions on M. We have a canonical (O-module basis of 09 given by the

constant functions

El(z) = (1,0,...,0),...,Eq(z) = (0,0,...,1).
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Suppose that F is an analytic sheaf on M and that fl....,fp
are continuous sections of F over some open subset U of M. Let

f = (fl,....fp): OE > FU denote the sheaf homomorphism defined by

- P
f(sl.....gp) jgl sjfj,z' (31"'°'5p) € Oz, ze U
The kernel of f 1s a subsheaf R(fy,...,f)) of 03 called the sheaf of

relations between fl,...,fp.

Theorem 7.1.3. Let U be an open subset of M and
fl,....fp € Oq(U). Then the sheaf of relations R(fl,...,fp) is a
subsheaf of 03 of finite type.

This theorem, due to Oka, is the fundamental result upon which

the theory of coherent analytic sheaves rests.

In view of the local nature of Theorem 7.1.3 it suffices to

prove

Theorem 7.1.4. Let Q be an open subset of G" and

fl,....fp € A(Q)q. We can find an open neighbourhood U of any point

z € Q and finitely many functions C,,...,C ¢ A(U)P such that

cl,x""'cr.x generate R(fl,....fp)x as an Ox-module for all x ¢ U.

Proof. First of all notice that

P
R(Epseeenf), = {(ay,eensap) € OF: ] ayf,

i=1

Since 0z is Noetherian, R(fl.....fp)z is certainly finitely generated.

P 2" 0}, z € Q.

We have to find generators which also generate the stalks in a

neighbourhood of z.

We may clearly assume that 0 ¢ Q and that z = 0. Our proof
goes by induction on q and n. First, suppose that the theorem has been
proved for all q in the (n-1)-dimensional case (note that the case
n =0 is trivial). We shall prove that the theorem is true for n and
q=1,

Without loss of generality we may assume that fl,...,fp are
normalised in direction z, and so, by the Weierstrass Preparation

theorem, we may suppose that fl,...,fp are Weierstrass polynomials in
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L with coefficients in A(Q'), where Q' is an open neighbourhood of
0 e ¢ 1. In what follows we may suppose Q = Q' x C. Let d denote

the maximum of the degrees of the polynomials fl""’fp‘ We may write
fi = Z f Z,i‘l,..-,P,

where fij e A(Q'). We let A'[zn] denote the group of polynomials in
z, of degree s d which have coefficients in A@Q'). For

= ('t e g", we let 0' denote thering of germs of analytic
functions on ¢" -1 at ' and A [z ] denote the germs at 7 of functions
in dA [z ]J. Finally, let R(fl,...,f ) denote the subset of
R(fl,...,f ) defined by R(f ,...,f ) = R(fl,...,f ) N dp (z, ] ,

T € Q. Note that R(fl,...,f ) has the structure of an 0'-modu1e

We shall prove the inductive step by first showing that for
all ¢ € Q, dR(fl,...,fp)c generates R(fl,...,fp)C as an OC-module. Then,
using the inductive hypothesis, we show that we can find a finite set
of generators for dR(fl,...,fp) (as an 0'-module) over some neighbour-

hood of zero.

Step 1: The (O-module R(fl,...,fp)c is generated by the elements
d
fi,.00, , .
of “R( 1 fP)C e

Suppose fp has degree d. Then, by the Weierstrass Preparation

theorem, we have for [ ¢ Q

= frET
vaC £,

where f', f" ¢ 0_, f' is the germ of a Welerstrass polynomial in
n =5 and £'(g) # 0. By Lemma 3.4.1, f" is a polynomial in z, with
leading coefficient 1. Let d', d'" denote the degrees of f', f" with

respect to z Given (al,...,ap) € R(fl,...,fp), we can by the

n°
Weierstrass division theorem write

a; = fp.Cbi + ¢y, i=1,...,p-1,

where b, e OC and c, € 0&.[zn] is of degree < d'. Set
p-1

c. = a + 2 f
P Pl .ci
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and observe that we have the identity

(al,....ap) = (fP,O,....O,vfl)cbl +.. 4-(0,...,0,fp,-fp_1)cbP

+ (cl,....cp) veed (%)

Now all the terms in this identity, except possibly (cl....,cp), lie
in R(fl""'fp);’ Hence (cl,....cp) € R(fl"“'fp);‘ Therefore
p-l ,
121 cifi.C + (cpf‘)f' = 0,
But the sum is a polynomial in z, of degree < d+d'. Consequently, by

Lemma 3.4.1, cpf" is a polynomial in z of degree < d. But since
(cpseeescy) = (/€M) (E%y,... ,f"cp)

and f"cl....,f"c have degree < d, it follows that

4
(cl,...,cp) € dR(fl,...,fp)g. This, together with (*), proves step 1.

Step 2: We may find an open neighbourhood U of 0 ¢ C" and
sections cl""’cr € dR(fl,....fp)(U) such that for all § ¢ U,
d v o
(:].'C.....Cr'c generate R(fl"“'fp); as an (!,-module.

d,,
Suppose a = (al,...,ap) € A [zn]C' Then

d
- J Al
ay 2 cij(zn)c’ c1‘1 € OC"
j=0
Now a e dR(fl.....fp)c 1f and only if 1§o a,f; = 0. That is, if and
only if
4 d

k+j) -0.

) e, £, (z
k=0 j=0 {=1 13 ik m

Equating coefficients of powers of z to zero we sgee that
ace€ dR(fl""'fp); if and only if

piber b eyyfp = 0 £ = 0,n00y2d,

That is, dR(fl,...,fp) i8 isomorphic to the kernel of the

homomorphism F = (F,,...,F )):O'P(d*l) +0'29*] geeined by

p(d+l



132,

(Fley M), = 123 € 4E) pmy? T O5eenn2d

d
In other words, R(fl,...,fp) is isomorphic to R(Fl""’rp(d+1)) and
so, by the inductive hypothesis, we may find an open neighbourhood U'
n-1 1P (d+1)
of 0 ¢ ¢ and cl,...,cr e A(U") such that C1 e vee,C .

generate R(Fl,..., for all ' € U'., Taking U = U' xC c ¢”

(d+1) z'
we see that Cl,. »C, give the required generators of R(fl,...,f ) as

an ('-module.

To complete our induction we now show that if the result is

true for n and q = 1 it is true for n and q > 1.

Setting f, = (fjl""'f ), we define £y = (fjl""’qu—l)’

j=1,...,p. For g ¢ R, we have

iq

R(fl,...,fp)C c R(fl”"’fp);'
Now by the inductive hypothesis for n and q -1, there exists a
neighbourhood V ¢ Q of O and Blr-r-28y € A(V)p such that g, o 8 r,C
generate the 0 -module R(fl,...,f ) for all g ¢ V. For g ¢ V, we

have R(fl,..., {jgl cjgj,;: cj € OC}' Sett:ng gj -(gjl,...,gjp),
1<j<r, and taking components as we see that I 484 r € R(fl""’fP)C
if and only if =1

21 kgl cj(gjkfki)c =C, 1=1,..

But the first q -1 of these equations automatically hold and so only
the qth. equation remains to be satisfied. By the inductive hypothesis
for n and q = 1, there exists a neighbourhood U ¢ V of 0 and

h € A(U)T such that the solutions (cl,...,cr) € OE of

12+ ohg
r

jzl kgl cj(gjkfkq); = 0 are generatei by hl.C""'hS.C’ T eU.

Defining Cy,...,C4 € A(U)P by c, = jzl hyy8ys 1s1iss, we see that
0

cl""’cs are the required set of generators for R(fl,...,fp)u.

Definition 7.1.5. An analytic sheaf F on the complex
manifold M is said to be coherent 1if
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a) F 18 of finite type.

b) Given any open subset U of M and sections fl""'fp e Fu),
then the sheaf of relations R(fl""'fp) is of finite type.

Theorem 7.1.6. Every analytic subsheaf of 09 which is of
finite type 18 coherent.

Proof. Theorem 7.1.3. 0

Corollary 7.1.7. Let F be a coherent sheaf on M, U be an
open subset of M and fl""’fp e F(U). Then R(fl,...,fp) is coherent.

Proof. R(fl.....fp) is a subsheaf of 05 of finite type. 0

Corollary 7.1.8. Let F be a coherent sheaf on M and x € M.
Then we may find a free resolution of F, of length m = dim(M), over

some open neighbourhood U of x:

Pn Sn Pp-1 °1, ,P0 %0
0+0, —>0, e =20, —F; > 0.

Proof. Since F is of finite type, we may find an open
neighbourhood Uo of x and sg.....so € F(Uo) such that for all g € UO’
Po

0 0
81.6""’8P0.C generate FC as an Oc-module. That 1is, setting

8y = (so.....s0 ) we have the exact sequence
0 1 P

50

—_

P
0,0 Fy
0 0

v +0.

Now Ker(s,) = R(so,...,a0 ) and so, since R(so....,so ) is of finite
0 1 Po 1 P
type, we may find an open neighbourhood U1 c U0 of x and

1 1 Po 1
sl,...,sp1 € A(Ul) such that sl,c

0 0 o el 1
R(sl....,spo)c. T e Uj. Setting s; (sl,...,spl), we obtain the exact

generate

sequence
P 8 P 8
0,0 100 —L>F, so0.
1 1 1
Proceeding inductively, we obtain after m steps the exact sequence
8

-2, FU +0.
m-1

Sm-1 N

P 8 P
m=-1 1 0
0U . 0U

m=-1 m-1
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By the Hilbert Syzygy theorem (Theorem 3.6.1), Ker(sm_l)y is a free

0y~modu1e, y € Um_ Suppose l(et(sm_l)x « Oxm. A set of generators

1
for Oxm is given by the constant functions Ej’ 1s3s Pp and, since

Ket(sm_l) is of finite type, it follows from Proposition 7.1.2 that the
Bj generate Ker(sm_l)y for y in some open neighbourhood Um of x. Taking

U= Um, we therefore obtain the exact sequence

P 8 P, 8

m_m m-1 0
0U —>OU +...-——-—>FU+0.
By the Hilbert Syzygy theorem, Ker(sm) =0, 0

Remarks. One consequence of Theorem 7.1.8 is that every
coherent sheaf is locally isomorphic to the cokernel of a sheaf
homomorphism a: 0P + 0%. Later on in this chapter, we shall examine to
what extent coherent sheaves admit global resolutions by free, and more

expecially locally free, sheaves of (-modules.

Example 2. The sheaf of holomorphic sections of a holomorphic
vector bundle E is coherent. Indeed, E is locally isomorphic to 09,
q = dim(E).

Theorem 7.1.9. We have the following basic properties of

coherent sheaves:

1. Every analytic subsheaf of a coherent sheaf which is of
finite type is coherent.

2. Suppose 0 + F 2,6 -5 +0 15 a short exact sequence of
analytic sheaves. If any two of the sheaves F, G, H are coherent, so
is the third.

3. The direct sum of a finite family of coherent sheaves is
coherent.
4, Let a: F + G be a homomorphism of coherent sheaves. Then

Ker (a), Im(a) and Coker(a) are coherent.

5. Let F, G be coherent subsheaves of a coherent sheaf H. Then
the sheaves F + G, F u G are coherent.
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6. Let F, G be coherent sheaves. Then FOOG ig coherent.

Proof. 1. Clearly every analytic subsheaf of a sheaf
satisfying (b) of Definition 7.1.5 also satisfies condition (b).

2.a) Suppose G and H are coherent. Since G is of finite type, we
may find an open neighbourhood U of any point x ¢ M and surjective
homomorphism c: 05 -+ GU' Since H satisfies condition (b), Ker(bc) is
of finite type and so, by 1., c(Ker(bc)) is a coherent subsheaf of GU'
But a maps FU isomorphically onto c(Ker(bc)) and so F is coherent.

b) Suppose F and G are coherent. Since G is of finite type and b
is surjective H is of finite type. We must show that H satisfies
condition (b). Let x ¢ M, U be an open neighbourhood of x and
sl,...,sp e H(U). Shrinking U if necessary, we may choose
p € G(U) such that sj = b(tj), j=1,...,p. Shrinking U further
if necessary, we may find Upseeer, € F(U) such that u

q 1,y" " "Yq,y
generate F_ as an 0_-module for all y ¢ U. Now given y ¢ U and

Elseenst

(fl,...,fp) € 03, (fl,...,fp) € R(sl,...,sp)y if and only if

E f,.t, ¢ Im(a). That is, if and only if there exist g,,...,g. € 0
g1 11 1 q€’y
such that 151 fit1 = jil 8ja(uj)‘ But R(tl,...,tp,a(ul),...,a(uq)) is
of finite type since G is coherent and since R(sl....,sp) is the image
of R(tl,...,a(uq))under the canonical projection of 0p+q on OP 1t

follows that R(sl....,sp) is of finite type.

c) We leave the case F and H coherent implies G coherent as an

exercise (details may be found in Serre [2] or Gunning and Rossi [1]).

3. The finite direct sum of coherent sheaves is coherent., This
follows by an easy induction from 2.c) or directly and we omit
details.

4, Suppose a: F + G 1s a homomorphism of coherent sheaves. Now
Im(a) is of finite type since F is of finite type and so, by 1, Im(a)

is coherent. Applying 2.a) and b) to the exact sequences

0 + Ker(a) + F + Im(a) + 0
0+ Im(a) + G + Coker(a) - 0

we see that Ker(a) and Coker(a) are coherent.
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5. The sheaf F + G is of finite type and so coherent by 1. The
sheaf F n G is the kernel of the quotient map F + H/G and is
therefore coherent by 2.a).

6. Let x € M. Since F is coherent, there exists an open neighbour-

hood U of x and exact sheaf sequence
05 + Og -+ FU + 0.
Tensoring with Gu we obtain the exact sequence
6,3g0% + Gyog0p ~ (FayG)y = 0.
Now GU°008 > Gg; Guaoog ] Gg and so we arrive at the exact sequence
Gy » G + (Fo,G)y =+ 0.

But by 3, Gp. G are coherent and so, by 4, (Fe,G), is coherent.
U 0"’u

Hence FOOG is coherent. 0

Remark. Theorem 7.1.9 suggests that set of coherent sheaves
on M is the smallest class of analytic sheaves on M which containe
the locally free sheaves (holomorphic vector bundles) and is closed
under the operations of quotient, kernel and image. Unfortunately this
is not generally true, even when M is compact (the ideal sheaf of a
point need not have a resolution by locally free sheaves in case every
holomorphic vector bundle on M is flat). However, if M is projective
algebraic, then every coherent sheaf on M has a global resolution by
locally free sheaves and so the coherent sheaves on M are the smallest
class containing the locally free sheaves and which are closed under
the operations of quotient, kernel and image. We shall return to this

question later in the chapter.
Examples.

3. Let X be a complex submanifold of the complex manifold M. Then
the sheaves Ix, 0x are coherent sheaves on M. First we prove lx is
coherent. The question being local we may suppose that X is the

subspace Gk of ™ defined by z =z, =0. If z ] Gk, lx 2" 0.
’

'S B z
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k
Forze C, lx,z (zk+
finite set of generators for Ix in a neighbourhood of z. Hence Ix

1,...,zm) and clearly 241008, give a

is of finite type and so coherent by Theorem 7.1.6. Since Oy = OM/lx,
we see from Theorem 7.1.9, 2, that Ox is coherent.

4, Let X be an analytic hypersurface in the complex manifold M.
Then lx, 0x are coherent. Theorem 3.5.16 implies that Iy is coherent.

Oy is coherent as in Example 3.

5. Let X be an analytic subset of M. Then lx, 0x are coherent.
The proof of this result is outside the scope of these notes depending,
as it does, on the local parametrization theorem for analytic sets.
The proof may be found in H. Cartan [1], Gunning [1 ; page 43],
Gunning and Rossi [1], R. Narasimhan [1], Whitney [1].

6. Let f: M+ N be a holomorphic map of complex manifolds and F be
a coherent sheaf on N. Then f*F is a coherent sheaf on M. This
result follows by representing F locally as the cokernel of a map
0P + 09 and then using the right exactness of f* - see Exercise 12,
§1, Chapter 6.

7. Suppose F is a coherent sheaf on M and f: M + N is holomorphic.
In general f,F will not be a coherent sheaf on N. However, if f is
proper, a deep and difficult theorem of Grauert asserts that f,F is
coherent. Proofs of this important result may be found in Foster and
Knorr [1), Kiehl and Verdier [1). See also R. Narasimhan [2]., In
case f is a finite map, the reader may consult Grauert and Remmert [1],
Gunning [1), R. Narasimhan [1].

8. Let F be a coherent sheaf on M. Then supp(F) is an analytic
subset of M (for the definition of supp(F), see Exercise 6, §1,
Chapter 6). To see this note that we can find an open neighbourhood

U of any x ¢ M and exact sequence
8 s
P__0.p9 1
OU——»OU——»FU»O .

Now supp(F) n U = {x ¢ U: 8 x $ 0} = {xc¢€ U:so x is not of maximal
’ ’
rank}. Now 8, may be represented as a q x p matrix with holomorphic

entries defined on U. The condition that 50 x is not of maximal
’
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rank is given by a finite set of algebraic equations in the

components of s Hence the set of points where 80.x fails to be

O,X. ’
of maximal rank is an analytic subset of U. A similar argument will
show that the set of points in M where F is not locally free is an

analytic subset of M.

9. Let X be a complex submanifold of M and let 0x denote Oxlx as
well as the sheaf 0x on M. Suppose F is a sheaf of Ox—modules on X
and F denote the trivial extension of F to M. Clearly F has the
structure of an Ox-module and, since Ox is an Ouﬂmodule, F has the
structure of an OM—moudle. We claim that F is coherent as a sheaf of
0

M
Well suppose F is coherent as a sheaf of Ox-modules. Obviously F|M\X

~-modules if and only if F is coherent as a sheaf of Ox-modules.

is coherent. Let x ¢ X. We may find an open neighbourhood U of x in

X and exact sequence
q P
OU->0U->FU-+0.

Taking any open neighbourhood V of x in M such that V. n X = U and

taking trivial extensions we obtain the exact sequence
(0419 + (Og P + Fy » 0.

But 0;, 0; are coherent sheaves on M and so by Theorem 7.1.9, 4, ?V
is coherent. Hence F is coherent. The converse follows easily from

Example 6.

10. Let F -2>6 —9—>H be a sequence of coherent sheaves on M and
suppose ba = 0 and the sequence is exact at the point x ¢ M (that is
at the stalk level). Then the sequence is exact on some open
neighbourhood of x. To see this we note that ker(b)/Im(a) is

coherent with zero stalk at x. Now apply the result of Example 8.
Exercises.

1. Let F, G be analytic sheaves on X with F coherent. Show that
for all x € X, Homo(F,G)x N Homo (Fx,Gx). Deduce that if F and G are
b

coherent then so is Homo(F,G).
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2. Remmert's proper mapping theorem states that the image of an
analytic subset by a proper analytic map is an analytic set. Deduce

this result from Grauert's direct image theorem and Example 8.

3. Let (X,0y) be an analytic space (§1, Chapter 6). Using the
result described in Example 5, show that Og is a coherent sheaf of
Ox-modules, p 2 1. Describe the appropriate extension of Example 9

to this more general framework.

4, Show that f,F need not be of finite type if f 1s not proper, F
coherent. (Hint: Take X =G, Y a point and F = 0y).

5. Let F be a coherent sheaf of Oy-modules on the complex manifold
X. Suppose that Fx is a free Ox—module for every x ¢ X. Prove that F

is8 locally free.

§2. Coherent sheaves on a Stein manifold.

Suppose that E 1s a holomorphic vector bundle on the

m-dimensional complex manifold M. We have the associated s-complex
0+ @ »c%me ... 2c0"m,E) 0.

For this section and the remainder of the chapter we shall assume that
the s-complex of any holomorphic vector bundle on a Stein manifold is
exact. In Chapter 11 we shall give a proof of this fundamental result
that depends on the theory of elliptic operators. For the present we
remark that we have proved the exactness of the 5—sequence in case M is
a polydisc or ¢" and E is trivial (Theorem 5.8.2) and indicated an

elementary proof in case M is the Euclidean disc and E is trivial
(Exercise, 2, §8, Chapter 5).

The Dolbeault isomorphisms (Example 5, §3, Chapter 6) imply
that our assumption is equivalent to the vanishing of HP(M,E), p=1,
for every holomorphic vector bundle E on a Stein manifold M. Since
the sheaf of sections of a holomorphic vector bundle is coherent we
see that our assumption amounts to a special case of the second of
the remarkable and famous Theorems A and B of H. Cartan:
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Theorem A. Let F be a coherent sheaf on the Stein manifold M.
Given x € M, we may find sl,...,sp € HO(M,F) = F(M) such that

veey8 enerate 8 an dule.
8 ,x’ 8 x g Fx as a Ox-mo

Theorem B. Let F be a coherent sheaf on the Stein manifold M.
Then HY(M,F) = 0, q 2 1.

The main aim of this section is to prove Theorems A and B,
granted our assumption that TheoremB is true for locally free sheaves

of O-modules.
Theorems A and B have many profound applications.

Examples.

1. Let X be an analytic subset of the Stein manifold M. Then X may
be represented as the common zero locus of a set of analytic functions
on M. For this it is enough to show that for each x ¢ M\ X, there
exists f ¢ A(M) such that f ¢ IX(M) and f(x) # 0. Set I = Ix and let
lx denote the ideal sheaf of the analytic set Xu{x}. Then Ix is a
subsheaf of 0 and lllx = ¢ (x), where C(x) denotes the "skyscrapper'
sheaf whose stalk is zero except at x where it equals C. Now, by
Cartan's coherence theorem, lx is coherent and so, by Theorem B,
HI(M,lx) = 0. Therefore, taking the cohomology sequence of the short

exact sequence 0 » lx + 1 +¢(x) - 0 we obtain the exact sequence
I(M) »¢ » O.

Hence, for any a ¢ ¢, there exists f ¢ T(M) ¢ A(M) such that f(x) = a.
Choosing a # 0, our proof is complete. In fact a much sharper result
ig true. It can be shown that if M is of dimension m, there exist
fl,...,fm ¢ A(M) such that X = Z(fl,...,fm). The reader may find a

proof in Forster and Ramspott [1] (see also Grauert [2]).

2. Let M be a complex manifold and U = (Ui: i ¢ I} be an open
cover of M by Stein manifolds. Then, exactly as in the proof of

Example 15, §4, Chapter 2, U =U, n...nU, 1is Stein for all
10...1k ig 1,
10""’1k € I. It follows from Theorem B that if F is any coherent

sheaf on M, then any Stein open cover of M is a Leray cover for F.
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Before we start on the main work of this section, we show how
Theorem B for free sheaves enables us to give a complete solution to

the Cousin problems on a Stein manifold.

Theorem 7.2.1. A Stein manifold is a Cousin I and Cousin A

domain.

Proof. Our standing assumption implies that Hl(H,O)
( -Hl(M,g)) = 0, M Stein. Hence, as in Example 6, §3, Chapter 6, M is
a Cousin I and Cousin A domain. 0

Theorem 7.2.2. Let d be a divisor on the Stein manifold M.
Then d is a divisor of a meromorphic function on M if and only if
cl([d]) = 0. 1In particular, M is a Cousin I and Cousin B domain if and
only if HZ(M, Z) = O.

Proof. Our standing assumption implies that
HI(M,O) = H2(M.0) = 0. Hence the Chern class map cy: HI(M,O*) +H2(M,Z)
is an isomorphism (see Example 11, §3, Chapter 6). The result now

follows from Example 16, §3, Chapter 6.
As an immediate consequence of Theorem 7.2.2 we have

Theorem 7.2.3. Let X be an analytic hypersurface in the Stein
manifold M. Provided that H2(M,Z) = 0, there exists f ¢ A(M) such
that

1. X = 2(f).

2. IX,x = (f,), for all x ¢ M.

Remark. If X is an analytic hypersurface in the m-dimensional
Stein manifold M and HZ(M,E) # 0, then it can be shown that X is
representable as the common zero locus of not more than 1 + [%]

analytic functions on M. See Forster and Ramspott [1; Satz 3].

We shall give further applications of Theorems A and B in the
remainder of the chapter and also in Chapter 12.

Proposition 7.2.4. Let F be a coherent sheaf on the Stein
manifold M. Suppose that F admits the (projective) reaolution
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am 81 80
0+E —>.... —E; —>F »0,

where Em,...,Eo are holomorphic vector bundles on M. Then

1. HIM,F) =0, q 2 1.

2. The map ag: Q(Eo) + F(M) 1is onto.

Proof. Set Kj = Im(aj), 0 £ j <m. The exactness of the

resolution of F is equivalent to the exactness of the sequences

0+ K +-E +K, -0, j~0,...,m-1.

I+l 3 3

Our standing assumption implies that Hq(M,EJ) =0,q21, 0<j< m

Consider the cohomology sequence of the short exact sequence

0~ Km > Em—l + Km_1 + 0, Since Km S E,, ve see easily that
Hq(M,Km_l) = 0, q 2 1. Proceeding inductively, we deduce that
Hq(H,Kj) =0,q21, j=0,...,m1. But KO = F and so we have proved
a
1. Now take the cohomology sequence of 0 + K; + E, —%,F+0to
obtain the exact sequence
%
0+ K, (M) » R(EQ) ——F@) ~+ 0.

This proves 2. ]

Examples.

3. Let X be an analytic hypersurface in the Stein manifold M and
suppose that HZ(M,ZZ) = 0. We claim that Hq(M,OX) =0, q21. Indeed
by Theorem 7.2.3, there exists f ¢ A(M) such that IX x " (fx) for all

’

x € M, Therefore Ox has the resolution
xf
0 > 0y —>0y » Oy/Ty = Oy + 0.
Now apply Proposition 7.2.4.
4., Let 10 denote the ideal sheaf of the point (0,0) € ¢? and
set 0 = 0@2, 00 = 0/10. Then 00 has the resolution

0*0L>02—h—>0->00->0,
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where a(f) = (zzf,zlf), b(fl'fZ) ; zlf1 - z,f,.
Hence, by Proposition 7.2.4, HI(C ,00) =0, q21.

Remarks .

1. Both the examples above are special instances of a general
technique for constructing resolutions of ideal or structure sheaves
based on the Kosaul complex. For details we refer the reader to
Griffiths and Harris [1) and Hartshorne [1]). See also the exercises
at the end of §5.

2. Unfortunately it is not true that every coherent sheaf on a
Stein manifold admits a resolution by free or even locally free
sheaves (see exercise 9). However, we shall prove that a coherent
sheaf on a Stein manifold M admits a free resolution over any
relatively compact subset of M and this will be a main step in the

proof of Theorems A and B.

The next few paragraphs are devoted to a study of the space of
sections of a holomorphic vector bundle defined over a domain of

holomorphy.

Proposition 7.2.5. Let E be a holomorphic vector bundle
over the domain of holomorphy  in an. Then

1. Given e ¢ E,, x € 1, there exists s € N(E) such that s(x) = e.

2. If w is any relatively compact open aibset of Q, there exists

an exact sequence
G-, - 0.
Proof. Our proof of 1 goes by induction on n. Suppose
n =1, Let ] denote the ideal sheaf of {x}. As in example 3 we
have the free resolution 0 + 0 —2> (0 + -0 of 1, where a is defined as

multiplication by z -x. Tensoring with E, we obtain the exact

sequence
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vhere EX = IGbE and is the subsheaf of sections of E which vanish
at x. Taking the cohomology sequence and applying our standing
assumption we see that HP(Q,EF) =0, p21. Since Er is a subsheaf

of E, we have the short exact sequence
b'e P
0->E "E““’E(X)"O

where E(x) is the skyscrapper sheaf with stalk Ex at x and zero
stalk everywhere else and P evaluates sections at x. Taking the
cohomology sequence and using the vanishing of ﬂl(n,gﬁ), we arrive

at the exact sequence
X P
0 > QE") » QE) —E, >0

and so P is onto, proving 1. Now suppose the result proven for n-1.
Without loss of generality suppose x = 0 ¢ 2. Let H denote the
intersection of the hyperplane Z, = 0 with Q. Since H is obviously
holomorphically convex, H is a domain of holomorphy (in G“-I). We
let (' denote the Oka sheaf of H and remark that (' & n_10|H. We
have the short exact sequence 0 + () —EL’O —I—’O' + 0 of sheaves

over  where a corresponds to multiplication by z; and r is restrict-
ion of germs to H. Tensoring this sequence with E we obtain the

ahort exact sequence
0+E-+E -L,EH +0

where EH is the sheaf of sections of the holomorphic bundle E
restricted to H. Taking the cohomology sequence we arrive at the

short exact sequence
0 + Q(E) + Q(E) —>Q(E|H) » 0.

By our inductive assumption, there exists 8 ¢ Q(E|H) such that
8(x) = e. Since r is onto, it follows that there exists s ¢ Q(E)
such that s(x) = e, completing the inductive step and proving 1.

For the proof of 2 we note that for each x € w, there exist,

by 1, S CRRRTL Q(E) such that (sl(x),...,sq(x)) is a basis for Ex
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q = dim(E). By the compactness of w, we may therefore find sections

1

sl....,sl.sf,...,s: € Q(E) such that for any x € , (s}(x),....s:(x)}

q
spans Ex. Taking r = pq, we see that the map c = (si....,sg): oF -+ E

is onto. 0

The next theorem provides a key step towards the proof of

Theorem B,

Theorem 7.2.6. Let F be a coherent sheaf on the Stein
manifold M. Then there exists a free resolution of F over any

relatively compact open subset w of M:
P P
0+0"s...+0%+F=o0.
w w

Our proof of Theorem 7.2.6 will depend on several lemmas.
Essentially, we shall first prove the theorem in case M is a domain
of holomorphy (hard) and then, using a lemma of Rossi, deduce the

general case (easy).

Definition 7.2.7. An open subset P of the Stein manifold M
1s called an analytic polyhedron if there exist f,,...,f, € A(M)
such that P is a union of connected components of the set
{z e M: Ifj(z)l <1, §=1,...,k}.

Remark. Just as in §4, Chapter 2, it is easily verified that
an analytic polyhedron is holomorphically convex and therefore a
Stein manifold.

Lemma 7.2.8. Let U be an open neighbourhood of the compact
subset K of the Stein manifold M. Suppose that K is A(M)-convex
(that is, K = K). Then we may find an analytic polyhedron P c U
which is a neighbourhood of K.

Proof. Without loss of generality we may suppose that U is
relatively compact. For each x ¢ 93U, there exists F ¢ A(M) such that
|IF(x)| > 1, IFlK < 1, By the compactness of 3U, we may therefore
find Fl""‘pq € A(M) such that .FI'K"""FqlK < 1 and
maxle(x)I > 1 for every x € dU. Since Q = {z ¢ M: IFJ(z)I <1,
j=1,...,q} 18 disjoint from 3U, we may take P = QnU. 0
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Suppose K 18 a compact A(M)-convex subset of the Stein
manifold M. We say that K possesses property (R) if given any open
neighbourhood U of K and coherent sheaf F on U, we can find an open

neighbourhood V of K contained in U and exact sequence
P
Ov-vFv-»O

(V and p will depend on F).

Lemma 7.2.9. Suppose that the compact A(M)-convex subset K
possesses property (R). Then given an open neighbourhood U of K and
coherent sheaf F on U, we can find a Stein open neighbourhood w c U

of K and free resolution of F over w:

Proof. Since K possesses property (R), we may find an open

Ph 4

neighbourhood Uo c U of K and exact sequence OUO -0, FU + 0. Now
0 0

Ker(ao) is a coherent sheaf on Uo and so, since K possesses property

p, a

(R), we have an exact sequence OU1 -—l—>Ker(ao)U + 0 over some open
1 1

neighbourhood U; < Uy of K. That is, we have the exact sequence

p, a Phn &

0ol 1,00 0,¢

U U, U,

proof of Corollary 7.1.8, to obtain a free resolution

+ 0. We now proceed inductively, just as in the

P P
0+0%+...+0 0., F. +0 veed(®)
Um Um Um

of F over some open neighbourhood Um c U of K. Finally, by Lemma
7.2.8 we may find a Stein neighbourhood w c Um of K and restricting

(*) to w we obtain the required result. a

Corollary 7.2.10. Suppose that the compact A(M)-convex compact
subset K possesses property (R) and that F is a coherent sheaf
defined on some open neighbourhood of K. Then

1. For every open neighbourhood V of K, we may find a Stein open
neighbourhood w ¢ V of K such that Hq(w,Fw) =0, q21.
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2. If f,fl,...,fk are sections of F over some open neighbourhood
V of K and if fl""'fk generate FV' we may find a (Stein) open
neighbourhood w ¢ V of K and 81y000r8y € A(w) such that

f = E ajfj on w.

Proof. Both 1 and 2 are immediate from Lemma 7.2.1 and
Proposition 7.2.4. 0

We now come to our main lemma.

Lemma 7.2.11 (H. Cartan). Let K be a compact A(f)-convex
subset of the domain of holomorphy 1. Suppose that f ¢ A(]) and that
K, = {z € K: Re(f(z)) = a} possesses property (R) for all a ¢ R.
Then K possesses property (R).

Proof. Our proof is a combination of that due to H. Cartan
together with a twist due to Hormander [1) which makes use of

Theorem B for locally free sheaves.

Let F be a coherent sheaf defined on some neighbourhood of K.
For = < a s b < +ove set K, = {z € K: a < Re(f(z)) s b},
’

Certainly l(a b is A(2)-convex since the condition a < Re(f(z)) s b
’

may be equivalently written as |exp(f(z))| < exp(b);
lexp(-£(2))| s exp(-a).

@,

K_, a possesses property (R). Let S denote the supremum of numbers
’
a such that K__ a Possesses property (R). 1t is enough to prove
’

S = 4o, gince K_m.+m = K,

For sufficiently large negative numbers a, K a” ¢ and so

Suppose S < +». Since Kg o = Ko possesses property (R),
’

Proposition 7.2.4 and Corollary 7.2.10 imply that there exists a
Stein open neighbourhood U; of K and f, = (fi,....fp)e F(Ul)p. such
that fl""'fl generate F as an O-module over Uj. Choose a < S <b so
that K a b © U;. By definition of S and Proposition 7.2.4,

I
Corollary 7.2.10, there exists a Stein open neighbourhood U2 of K__
and f, = (f ....,fg) € F(Uz)q such that f;,...,fz generate F as an
(O-module over Uz By Corollary 7.2.10, 2, we may find an open Stein
neighbourhood U3 of Ka,a

holomorphic on U3, such that

and q x p matrix 61, with coefficients
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elfl = f, on Uy,
Similarly, we may find a p x q matrix 02, with coefficients

holomorphic on some Stein open neighbourhood U, of Ka a’ such that
’

02f2 = fl on UA'

Shrinking Ul....,Ua we may suppose that U1 nu, = U3 - UA (though, of
course, the neighbourhoods need no longer be Stein). Since K—m,b is
A()-convex and contained in U1 uUz, there exists a Stein open

neighbourhood U of K-”,b which is contained in U1 u02 (Lemma 7.2.8).

Replacing the neighbourhoods Uj by their intersections with U, we

may assume that U, vU, = U and U; nU, = 03 =U,.

For j = 1,2, we define homomorphisms FJ: OSIQ + FUj by
1

1
1 ) = uif: , u = (ui....,u

) e a(upPH
pHq 1=1 1

1 1
Fl(ul,...,u phq

i 2
Fz(ui,....uz ) = § 2 fz; u' = (u]"t,....u2

u ) € A(U,)PYI,
pHq 1=1 i+p ptq 2

Our construction guarantees that the sequences

F
0p+q ——J—,F +0
Y3 Y3

are exact, j = 1,2, In the remainder of the proof we show how to

identify the sequences over U ., to obtain a locally free resolution

12
of F over U.

Let Ip' Iq denote the identity p xq, q xq matrices

respectively. We see that

]
Ip 0 f1 IP 02 0
= on 012.
01 Iq 0 0 Iq le
Hence
fl IP 0 Ip 02 0
0 -6 I 0 1 f
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Let 6: U12 -+ GL(p +q,C) denote the holomorphic matrix function
defined by

Observe that, over "12’ we have Fi - eFi, where the prime denotes
transpose. Therefore, F; = er'. Hence, if uj € A(Uj)m, j=1,2,
Flul - quz if and only 1if Fz(e'ul) =- quz. In particular, we have
equality if u? = g'ul, Setting ¢, , = (9')-1. 6y - ¢Ii we see that
(012.021} are the transition functions for a holomorphic vector
bundle E over U = Ul v} Uz and that the condition ozlul - u2 amounts
to saying that u”, u® are local representatives of a holomorphic
gsection u of E (over U). The morphisms Fl, F2 determine a homomor-
phism E + FU which is surjective since both Fl and F2 are surjective.
We now apply Proposition 7.2.5, 2, to deduce that l(_m’b possesses
property (R). Contradiction. Therefore S = 4= and K possesses
property (R). 0

Lemma 7.2.12. Every compact A(f)-convex subset K of a
domain of holomorphy Q in ¢” possesses property (R).

Proof. The set {z ¢ K: Re(zj) - ay, Im(zj) - bj, j=1,...,n}
possesses property (R) for arbitrary ay 'Pi ¢ R since it either is
empty or consists of a single point. By Lemma 7.2.11, the set
obtained by dropping one of the conditions Re(zj) = ay Im(zj) - bj
still has property (R). Iteration of this argument 2n times gives
the result. D

The first part of the next lemma will enable us easily to
extend Lemma 7.2.12 to an arbitrary Stein manifold. We shall use the

second part to prove a key approximation theorem needed in the proof
of Theorem B.

Lemma 7.2.13. Let K be a compact A(M)-convex subset of the
Stein manifold M. Then, given an open neighbourhood U of K, we may
find a Stein open neighbourhood V ¢ U of K and holomorphic map
F: MgV such that
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1. F maps V biholomorphically onto a closed submanifold P of the
N
unit Euclidean disc E = {(z),...,2y): ) izilz} of ¢V,
1

i=

2. For p 21, HP(E,I;) = 0 (I, denotes the ideal sheaf of P).

Proof. (Rossi [1]). Without loss of generality we may
suppose that U is relatively compact. For each x ¢ U, we may find
£roees
compactness of T, we may find a finite set hl""’hp ¢ A(M) which
give local coordinates at every point x ¢ U. 1In particular, we may

find an open neighbourhood W of the diagonal in U x § such that if

fm € A(M) which define local coordinates at x. Hence, by the

X,y € W, x # y, there exists an hj with hj(x) # hj(y). For each
x,¥Y € U x G\W, we can find f ¢ A(M) with £(x) ¥ £(y). Therefore
,h_ e A(M)

N pH’
which separates points in U x U\ W. We see at once that the set

since U x 1\ W 18 compact we may find a finite set h

hl.....hr separates points of U and gives local coordinates at every
point of U. 1In particular, the map h = (hl,....hr): M + GF restricts
to an injective holomorphic immersion on some neighbourhood of 0.
Multiplying h by a sufficiently small scalar we may in addition
suppose that

r
2 2
Ihly =~ ] ingk, <k
K j=1 Ik
Just as in the proof of Lemma 7.2.8, we may find fl,...,fk e A(M)
such that I1f, 0, <1, 1 s j < k and maxj|fj(z)l >1, all z ¢ 3U. For

'K
positive integers q, define gq: M-+ R by

X 2
gg(® = ] |fg| .
i=1
Fix a value of q so large that lngK <)% and ng(z)l >1, z e 3.
For 2z ¢ M, define

5 2
6(2) = g(2) + [ [hy(2)]
3=1

and let V = {z ¢ U: G(z) < 1}. Our construction guarantees that V is
T+ gefined
by F = (hl,....hr,fg,...,fg), maps V biholomorphically onto a closed

an open neighbourhood of K with V cU. The map F: M > C

submanifold P of E. In particular P is Stein, since E is Stein, and
so V is Stein.
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To complete the proof, notice that for € small and positive,
V = {z € U: G(z) < 1l+¢€} will be mapped biholomorphically by F onto
a closed submanifold Pe of the Euclidean disc Ee of radius 1 +¢. Now
IPEIE - IP and so, since E 1is an A(EE)-convex compact subset of Ee'
Lemma 7.2.12 and Corollary 7.2.10 imply that HP(E,IP) =0, p21l. 0

Proof of Theorem 7.2.6. Let w be a relatively compact Stein
open subset of M. Then K = ﬁ is a compact A(M)-convex subset of M.
By Lemma 7.2.13, we may find a Stein open neighbourhood V of K and
holomorphic map F of M into some aN such that F maps V biholomorphic~-
ally onto a closed submanifold P of the unit Euclidean disc E in GN.
Since F maps V biholomorphically onto P, F*FV is a coherent sheaf of
F*OV - Op-modules on P, Let F denmote the trivial extension of F*FV
to E. F is a coherent sheaf of Og-modules. Choose € > 0 so that
(FIV)—ll".‘e > K, where Ee denotes the open Euclidean disc of radius 1l -¢
in oV, By Lemmas 7.2.9, 7.2.11, we may find a free resolution
0~ 0:”-+...-+O:: > ?E + 0 of F over Ee. Restrict the resolution to

€ €
P.=E_nP and apply Exercise 9, §1 to obtajn a free (p-resolution
of FuF over Pe' Pull back by F to obtain a free OM-resolution of F
over (FIV)_I(ES) > K. We have shown that F has a free resolution

over gome open neighbourhood of K and, a fortiori, over w. a
As an immediate corollary of Theorem 7.2.6 we have

Lemma 7.2.14. Every compact A(M)-convex subset K of a Stein
manifold M possesses property (R).

Proposition 7.2.15. Let F be a coherent sheaf on the Stein
manifold M. Then HI(M,F) = 0, q 2 2.

Proof. Using Lemma 7.2.8 we may choose an open cover
U= {Ui’ i%1,2,...} of M by relatively compact Stein open subsets of
M satisfying
- o
1. Un c Un*"l' n21; 2, nl;)l Un = M.

By Example 2 and Theorem 7.2.6, U is a Leray cover of M for F. Hence
i, P =~ uiu,rF), q 2 0. Suppose A ¢ 29(U,F). For n 2 1, let

u, = {Uj: 3=1,...,n} and A denote the restriction of A to U .

Since U, is a Leray cover of UK for F and Hq(Un.F) =0, q21, we
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have Hq(Un,F) = 0, q 21. Now An € Zq(Un,F) and so there exists
b € Cq-l(Un,F) such that D(b_ ) = A,. Extend b_ to Cq_l(U,F) by
setting bnlUj =0, } > n. We construct inductively a sequence
B, € Cq_l(U,F) satisfying

1. BnlUj = leuj, Jsn; 2. A = D(Bn)]un.

Define B, = bl and suppose Bl,...,Bn have been constructed. We have
D((bn+1 -nn)|un) = 0. So, provided that q-1 2 1, there exists

Cy € c9"2(U,,F) such that D(C,) = (b, -B.)|U;. Extend C_ to
c¢97%(U,F) by taking C:_\{Uj =0, j >n. We define B, =b . -D(C)).
Finally define B ¢ CY™"(U,F) by B[Uj = By. Clearly D(B) = A. 0

The proof of Proposition 7.2.15 clearly breaks down if q = 1
and we have to use an approximation theorem for this case. First we

need to topologise the space of sections of a coherent sheaf.

Let K be a compact A(M)-convex subset of the Stein manifold M
and F be a coherent sheaf on M. By Proposition 7.2.4 and Theorem
7.2.6 we may find sections BysereaBy € F(K) which generate F as a
O-module over K (see also Lemma 6.1.12). Let s ¢ F(K). Define

k

IslK = inf{maXchIK: s= cy8ys 4 € O(K)}.
hj =1
The seminorm | IK may depend on the choice of generators 81seeesBp

but another choice of generators gives an equivalent seminorm since
the two sets of generators are related by a matrix with holomorphic

entries analytic on K, Corollary 7.2.10.

Lemma 7.2.16. Let s ¢ F(K) and suppose that IsIK = 0. Then

s, = 0, for all z ¢ ﬁ.

Proof. Choose generators 8)seees8) € F(K) for F over K and

k

suppose 8 = z cjsj on K. If |3|K = 0, we may find for every € > 0,
j=1 k

cg € 0(K) such that s = 2 cisj and Hcink <g, 153 sk, We

certainly have =1

(c1 -ci,...,ck —ci)z € R(sl,...,sk)z, z € K oo (%)

Fix z ¢ R and let Pl""'Pq € R(sl,...,sk)z be a set of generators
over Oz for R(sl,...,sk)z. By Theorem 3.6.2 and the Oka Theorem
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(Theorem 7.1.6), there exists an open neighbourhood D c ﬁ of z such

that the sequence
AB(D)q _z'>Rn(sl""’sk)(D) +0

is gplit exact ("B" denotes bounded sections). In particular, letting
€ + 0 in (*), we see that (cl,...,ck)ID € Im(P) = R(sl,...,sk)(D).

But therefore sy = 0, y ¢ D. Hence the result. Of course, our
argument is just the closure of modules theorem, Exercise 3, §6,
Chapter 3. 0]

Let (Kn)nZI be a normal exhaustion of M by compact A(M)-convex
subgets Kn (see §4, Chapter 2 and note that we require Kn c ﬁn+1,
n 2 1), For each n choose sections in F(Kn) which generate F over Kn

and let | In =| |  denote the corresponding seminorm. We take the

K

n
topology on HO(M,F) defined by the seminorms | ‘n' n21l., It is quite
straightforward to verify that any two normal exhaustions of M will

give rise to the same topology on HO(M,F).

Lemma 7.2.17. Suppose that we are given sections fn € F(Kn),
n 2 1, such that for p 2 1, lfn-fmlp + 0, n,m » ®», Then there exists

a unique section F ¢ F(M) such that |F -fnlp +0, n+o, p21,

Proof. Fix p 21 and let 8)10e0s8) € F(KP+1) be sections
defining | |

pHL* Choose integers n; SNy s ... such that
£ -f <27l 121,
a1 "lpn
Set uok- fnl, ug = f"1+1 —fni’ i 2 1. Choose cyy € O(KP+1) such that
-1 -1+1
u, = 2 c,,8, and maxlc, 1 <y, +2 52 . Since

145 11 g 1K 1'p+1
-] L. ]

2 fic, .0 < o, the series Z c converges uniformly on K to a
1=1 13Ky t=0 4 ptl
function Cj which is analy:ic on EP+1' 1 s 3js k. Since Kp c 2P+1’

C, € 0(K). Define F_ = 2 C,s, and observe that
| P P %

- IFP - § uil +0asq =,
P
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Now by the triangle-inequality it is clear that IF -f | + 0, n >,
Moreover by Lemma 7.2.16, this condition detetmines Fp uniquely on KP.
In particular, p+r|ﬁp = Fplﬁp, r 2 0. Define F ¢ F(M) by Flﬁp*-Fp. 0

Theorem 7.2.18. Let F be a coherent sheaf on the Stein
manifold M and give HO(M,F) the topology described above. Then
HO(H,F) is a Fréchet space. 0

Proof. Lemmas 7.2.16, 7.2.17. 0
Next we prove our main approximation theorem.

Theorem 7.2.19. Let K be an A(M)-convex subset of the Stein
manifold M and suppose that f € O(K). Then there exists a sequence
£ € A(M) such that Ifn--flK +0, n~+ o,

Proof. We may suppose that f € A(U), where U is an open
neighbourhood of K. By Lemma 7.2.13, we may find a Stein open
neighbourhood V ¢ U of K and analytic map F: M » GN such that P = F(V)
is a closed submanifold of the unit Euclidean disc E in GN and
HP(E,1,) = 0, p 2 1. Let g = £(FIV)™" ¢ A(P). Taking the cohomology
sequence of 0 -+ IP -+ 0B + OP + 0 we see that the restriction map
A(E) -~ A(P) is onto. Therefore there exists G ¢ A(E) such that
GIP = g. Now polynomials are dense in A(E) (Exercise 1, §2, Chapter 2)
Therefore, for n 2 1 we may find a polynomial P, on GN such that
lpn -GIF(K) < 1/n. Set £, = p,F € A(M). Then lfn --flK +0,n>> 0

Theorem 7.2.20. Let K be a compact A(M)-convex subset of the
Stein manifold M and F be a coherent sheaf on M. Suppose f € F(K).

Then there exists a sequence fn e F(M) such that |f —fnlK +0, n+> o,

Proof. Choose a normal exhaustion (Kp) of M with K; = K. Fix
n21l., For p > 0, we shall construct gp € F(KP) such that

g, = f and Igp -8 < 2P/, rs pP.

p+1|t

By Lemma 7.2.17 this will imply that there exists fn € F(M) such that
Ifn--gjlp +0, j »o, p21. Taking p = 1 and noting that

f = jZl (gj+1 -gj) + f on K, we therefore have Ifn -fIK < 1/n,
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To construct the sections gp we proceed inductively and suppose
B1»ece18p consttucted Let BlseresB) € F(Kp+1) generate F over Kp+1.
Then g, = 2 cy8ys 4 € O(K ). By Theorem 7.2.19, we may find

j € A(M) such that lc -dj

satisfies our requirements.

lK < 27P/n. Clearly 8o I d
P 3=1 o

Theorem 7.2.21. (Theorem B of Cartan). Let F be a coherent
sheaf on the Stein manifold M. Then HI(M,F) =0, q 2 1.

Proof. We have already proved that HI(M,F) = 0, q 2 2
(Proposition 7.2.15). There remains the case q = 1.

Choose a normal exhaustion (Kn)nzl of M. For each n we may,
by Lemma 7.2.8, find a relatively compact Stein open neighbourhood

Un c 2 of K ., Certainly U cU As in the proof of

1’ n21.
Proposition 7. 2 15, U = (U } 13 a Leray covet of M for F. Set

Un = [Ui’ i=1,...,n}, n21. Given AelZ (U F), let A denote the
restriction of A to U Since H (U ,F) = 0, there exists

bn € C (U »F) euch that D(b ) = A , n 21, We construct inductively

a sequence B ¢ C (U »F) such that
1. D(B) = A -

2. IB_-B ] 2"

n n+l'r »1srsn.

(For 2 note that 1 implies Bn -B € F(Un)). Take B, = b1 and suppose

n+l
Byse.oyBy have been constructed. Condition 1 implies bn+1 -B, € F(Un)
and so by Theorem 7.2.20 there exists n € F(M) such that
|B n+1 nl Now take B bl bn+1'+n. Next weﬁshall
construct F + =
uc P € F(ﬁp) such that Bp Fp BP+1 + Fp+1 on P’ p21.

Given p 2 1, let 81seresBy € F(Kp) define the seminorm | Ip. We may

choose cij € O(Kp) such that for { 2 p, (B“_1 —Bi)|l(p = jzl cijaj and

-1+
max e, 0, < 2 t 1. Just as in the proof of Lemma 7.2.17 these
3 1_11(p

conditions imply that for 1 s j S k, 2 cij converges uniformly on I(p
i=p
to a function Cj which 1is analytic on R . Set F 2 C € F(ﬁp).

For every A(M)-convex compact subset K of ﬁ we have
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n
1im|(F_+B )-B .|, = lim|F_- } (B,,.-B)I, = O.
e PP Tn#l'K pon P ghp 1T LTK

It follows from Lem:a 7.2.16 that Bp + FP = Bp+1 + Fp+1 on Rp. Hence
we may define B ¢ C (U,F) by BI&p = Bp + Fp, p21l. Now as
D(B )1V, = A and F .

i8 a cocycle - we see that D(B)IUn - An’ n21l. Hence D(B) = A. 0

restricts to a section of F over Un - that

Theorem 7.2.22 (Theorem A of Cartan). Let F be a coherent
sheaf on the Stein manifold M. For each x ¢ M, there exists

81""’8p e F(M) such that sl,x""'sp x generate Fx as an Ox—module.

Proof. Let I denote the ideal sheaf of {x}. Then IF is a
coherent subsheaf of F, Theorem 7.1.9, 1. Therefore by Theorem B,
HI(M,IF) = 0 and so taking the cohomology sequence of

0+ 1IF > F » FIIF + 0 we obtain the exact sequence
F(M) + (F/IF)(M) » 0 ceea(®)

For y ¢ x, (IF)y = Fy and so (F/IF )y = 0. Hence (F/IF)(M) = Fx/mex,
where m. denotes the maximal ideal of 0x at x. Let N denote the
Ox—submodule of Fx generated by {sx: s € F(M)}. Since (*) is exact
we have N + mex = Fx' It now follows by Nakayama's Lemma that
N=F_. 0

We may now give a global version of Corollary 7.2.10.

Theorem 7.2.23. Let F be a coherent sheaf on the Stein mani-

fold M. Suppose that s;,...,8 € F(M) generate Fx for every x € M.

P
Then given S ¢ F(M), there exist fj e A(M) such that

S = jgl fjsj.

Proof. The sheaf map s = (sl,...,sp): 0: + F + 0 is onto.
Since Ker(s) is coherent, Theorem 7.1.2, HI(M,Ker(s)) = 0 by Theorem B.
Hence taking the cohomology sequence of 0 + Ker(s) 05 S5F +0 we
obtain the exact sequence AP S Fay+ 0. 0

Remarks . Our proof of Theorem B is close to that of
Hormander [1] in that it makes use of Theorem B for locally free

sheaves of ()-modules. The main difference is that we make use of a
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device of Rossi [1] to give an elementary proof of the approximation
theorem, Theorem 7.2.19. Cartan's original proof starts by estab-
lighing Theorems A and B for cubes in C" and then extends the result
to Stein manifolds. For expositions of this approach to Theorems A
and B see H. Cartan [1], Grauert and Remmert [1] and Gunning and
Rogsi [1]. Rossi [1] gives a proof of Theorems A and B by starting
from the relatively elementary result of Oka to the effect that
Hq(D,OD) = 0, q 21, for all polynomially convex domains D in c”,
Using this result he constructg arbitrarily fine Leray covers for
coherent sheaves and then proves Grauert's finiteness theorem for
strictly pseudoconvex domains (see §4). Rossi then shows that the
cohomology of a coherent sheaf on a strictly pseudoconvex domain is
supported on the compact analytic subsets of the domain (see also
Rossi [2], R. Narasimhan [3]), Since Stein manifolds have no non-
trivial compact analytic subgets this is sufficient to deduce the
vanighing theroem for relatively compact strictly pseudoconvex
domains in a Stein manifold. The rest of his proof is similar to what

we have presented here.

One point about our proof should be noticed: We really only
assume Theorem B for locally free sheaves defined over contractible
domains in ¢". 1In fact by a theorem of Grauert, such locally free
sheaves are free. Of course if we knew this, we could apply an
appropriate version of the (elementary) Dolbeault-Grothendieck lemma
to prove Theorems A and B. However, a direct proof that locally free
sheaves over contractible domains in C" are free is not easy. It is
a main step in the original proof of H. Cartan (and then only for a
restricted class of contractible domains in Gn). A proof of the
triviality of locally free sheaves over contractible domains in ¢"
which uses Theorem B for locally free sheaves may be found in Adams
and Griffiths [1].

One merit of the partial differential equation techniques used
in establishing the exactness of the 3-seqeunce on a Stein manifold
is that they give good estimates on the growth of solutions to 3f = g
The resulting "cohomology theory with bounds" has important applicat-

ions to the theory of partial differential equations and is described
in Hormander [1].
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Exercises.
1. Show that Theorem 7.2.20 is false if K is not A(M)-convex.

2., Prove that if M is a complex manifold such that Hl(M,I) =0
for all coherent sheaves of ideals I of 0M then M is Stein (Hint: For
the holomorphic convexivity of M show that given any discrete subset
{xiz i 2 1} of M there exists f ¢ A(M) such that £(xy) =1, 1 2 1.
See also Seminar number 20 by J. Serre in H. Cartan [2]).

3. Show that if M is an m~dimensional Stein manifold then
H'(M,C) = 0, r > m (Use Example 23, §1, Chapter 6).

4. Let M be a Stein manifold and suppose HZ(M,E) = 0. Show that
any non-zero meromorphic function on M may be written in the form f/g,
f,g € A(M) and (fx,gx) =1, x € M.

5. Let M be a Stein manifold and suppose m is8 a meromorphic
function on M. Show that there exist f,g ¢ A(M) such that m = f/g
(Hint: for z ¢ M, let Ez denote the ideal of Oz consisting of all germs
8, such that g,m, € Fz'A Prove that the sheaf F is coherent and find a
non-trivial section of F). 1In Chapter 12 we give examples to show

that we cannot generally require (f ) =1, z ¢ M.

28,
6. Let M be a Stein manifold with HZ(M,Z) = 0 and suppose that H

is an analytic hypersurface in M. Prove that M\ H is Stein.

7. Suppose that {x;} is a discrete subset of the Stein manifold M

and that for each i we are given a Laurent series
P(1) o
L, = aj(z-x,)", 0 < P(1), N(1) < =.
m=-N(1)

Show that there exists a meromorphic function m on M such that for
all 1, (m-Li) is holomorphic on some neighbourhood of xg and has a
zero of order P(i) +1 at zy (see Exercise, §3, Chapter 1).

8. Let H be an analytic hypersurface in the Stein manifold M.

Show that 0“ has a resolution by locally free sheaves of the form

0> (B 0,+0,+0.
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9. Show that a coherent sheaf on Gn, n > 1, need not have a
resolution by (locally) free sheaves of ( n-modules (Hint: Given

z € C" and p 2 1, consider resolutions of the coherent sheaf 0¢“/I¥z}).

§3. The finiteness theorem of Cartan and Serre.

The aim of this section is to prove that dim Hq(M,F) <w, q 2 0,
for all coherent sheaves F on a compact complex manifold M. We start
by reviewing some definitions and results about Frechet spaces. A
general reference for Frechet spaces is Rudin [1]. See also Appendix
B in Gunning and Rossi [1] .

Lemma 7.3.1. Finite direct sums and countable products of
Fréchet spaces are Fréchet. If G is a closed aubspace of the Fréchet
space E then G and E/G are Fréchet.

Proof. We shall prove that E/G is Fréchet if G is a closed
subspace of E and leave the remaining assertions as elementary
exercises for the reader. Suppose that the topology on E is defined by
the seminorms | lp’ p21l. Let q: E > E/G denote the quotient map.

For p 2 1, define

lq(uw)|' = influ-g|l , ue E.
Then | l; are seminorms on E/G defining the quotient topology on E/G.
Since G is a closed subspace of E, E/G is Hausdorff and it is
straightforward to verify that the seminorms | I; define the structure

of a Frechet space on E/G. 0

Theorem 7.3.2. (Open mapping theorem). Let A: E+ F be a
continuous surjective linear map between Freéchet spaces. Then A is
open. In particular, if A is a continuous linear bijection, A is a

homeomorphism.

Proof. Rudin [1; Corollary 2.12], Gunning and Rossi
[1; Appendix B]. 0

Theorem 7.3.3. A locally compact Fréchet space is finite

dimensional.
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Proof. Rudin [1; Theorem 1.22], Gunning and Rossi
[1; Appendix BJ. D

Definition 7.3.4. Let A: E + F be a continuous linear map
between Fréchet spaces. We say A is compact if there exists an open

neighbourhood V of 0 in E such that A(V) is relatively compact.

Theorem 7.3.5. (L. Schwartz). Let A,B: E + F be continuous
linear maps between Fréchet spaces and suppose that A is surjective
and B is compact. Then Im(A+B) is a closed subspace of F and
F/Im(A +B) is finite dimensional.

Proof. Gunning and Rossi [1; Appendix B]). D

Suppose that U is an open subset of the complex manifold M.
We may give O(U) the structure of a Fréchet space by taking as

seminorms

€1, = L £ e 0,

where (Kp) is any increasing family of compact subsets of U

satisfyingpijxp = U and Kp c Rp+1' P 2 1. Indeed, the topology
defined by the seminorms is just the topology of uniform convergence
on compact subsets of U. In particular, it is independent of the

51 and corresponding seminorms. It follows

choice of sequence (KP)p
immediately from Lemma 7.3.1, that 0(U)P has the structure of a Fréchet

space, p 2 1.

Now suppose K is a coherent subsheaf of 05. Just as in the
proof of Lemma 7.2.16, the closure of modules theorem implies that
K(U) is a closed subspace of O(U)P. Hence, by Lemma 7.3.1, K(U) is
Fréchet.

We shall say that an open relatively compact subset U of M is
C-admigsible if U is a Stein open subset of M and there exists another
Stein open subset V of M such that Ucv.

Suppose that U is C-admissible and F i8 a coherent sheaf on M.
By Theorem 7.2.6 and Proposition 7.2.4 there exist 81seves8y € F(U)
which generate F(U) as an 0(U)-module. Taking the cohomology sequence
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of the exact sequence 0 -+ R(al,...,ak) > 0: > FU + 0 and applying

Theorem B, we arrive at the exact sequence
0 > R(s),...,8) (V) » 0* + F) » 0.

As noted above, R(sl....,ak) is a closed subspace of O(U)k and 8o, by

Lemma 7.3.1, F(U) has the structure of a Fréchet space.

We have already defined a Fréchet topology on F(U), Theorem
7.2.18. Noting the definition of the seminorms on the quotient
F(U) = Ok(U)/R(sl,...,sk)(U), it is clear that these two topologies
coincide. In particular, the topology we have defined on F(U) is
independent of the choice of generators 81reeesBy (see the discussion
in §2).

From now on, assume that F(U) is topologised as a Fréchet
space for all C-admissible subsets U of M.

Lemma 7.3.6. Let U, V be C-admissible subsets of M with

: F(U) + F(V) is continuous.

V ¢ U. Then the restriction map v’

Proof. Certainly, the restriction maps are continuous if
F = 0P. Hence they are continuous if F is a coherent subsheaf of 05
and so, taking quotients, the result follows in general. 0

Suppose now that U is an arbitrary open subset of M. Since M
has a basis of open sets consisting of C-admissible sets (for example,

biholomorphic images of polydiscs), we may write

v = U U,
P

where the Uj are C-admissible open subsets of M. By Lemma 7.3.1,

(-] o0
ar F(Uj) has the structure of a Fréchet space. Let Z ¢ _TT'F(Uj) be
j-]_ =]

the subset defined by Z = {(fj): fj =f onU W hkz 1} and

© b
K: T F(UJ) > 1T F(u, ) be the linear map defined by

=1 1sj<ken 3
K((fj)) - ((fj -fk)IUjk). By Lemma 7.3.6, K is continuous and there-

[
fore Z = K-l(O) is a closed subspace of || F(Uj). Hence by Lemma
] o
7.3.1, Z is Fréchet. Now define x: F(U) » 1 F(U;) by x(£) = (£1U,).
i=1
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We see that X maps F(U) bijectively onto Z and so F(U) inherits the
Fréchet space structure of Z. Moreover, the Fréchet space structure
we have defined on F(U) is independent of the decomposition of U as a
) oo
countable union of C-admissible sets. For suppose U = U Ui = U U§
i=1 =1

are two such decompositions of U. Then U = U Ui n U§ is also a
1,3
decomposition of U as C-admissible sets. Denote the corresponding

closed subspaces of WF(U;),'WF(U%), TTF(Ui nU§) by 2,, Z,s Z

respectively. We have the commutative diagram
1
Tl'F(Ui) \

TF(U

12

2y

F(U) j

g
TF(U} av
\\\\53\\
J)

where L5 and r, are induced by restriction and are therefore contin-
uous by Lemma 7.3.6. Now ] and r, restrict to continuous bijections

of Z1 and Z2 on 2 Therefore by the open mapping theorem

12°

(Theorem 7.3.2), Z1 is homeomorphic to 212 which in turn is homeo-

morphic to ZZ'

From now on assume that F(U) is topologised as a Frechet

space according to the recipe above for all open subsets U of M.

Suppose that G is another coherent sheaf on M and ¢: F + G is
a homomorphism. We claim that for all open subsets U of M the induced
map ¢U: F(U) - G(U) is continuous. By our definition of the
topologies on F(U), G(U) it is clearly enough to verify that oy is
continuous in case U is C-admissible. I1f U is C-admissible, there
exist exact sequences 0P Z5Fw) »0, 09 —£L>G(U) + 0. Take
the standard bases {El,...,Ep},{El,...,Eq} of 0 (WP, 0 (V)Y (see §1).
For 1 £ j S p, there exist Ty € 0(U) such that

dy(e(E)) = 121 FRICRE

Defining WU: 0P 0 by the matrix [rij] we obtain the

commutative diagram
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o)P F(u) >0
o) t G(v) >0 .

Now Wu 18 obviously continuous and so, since the quotient maps 8 and
t are continuous, it follows from the Open Mapping theorem that @U is

continuous.

Definition 7.3.7. A sheaf F of (-modules on a complex manifold
M is said to be a Fréchet sheaf 1if

a) For each open subset U of M, F(U) 1s a Fréchet space.

b) The restriction maps r F(U) » F(V), V c U, are all continuous.

vu'
Theorem 7.3.8. Let M be a complex manifold. Then there is a
unique way of giving every coherent sheaf defined over an open subset

of M the structure of a Fréchet sheaf satisfying:

a) If U 18 an open subset of M and F is8 a coherent subsheaf of Op,
then F(U) cO(U)P has the topology of uniform convergence on compact

subsets.

b) I1f ¢: F + G 18 a homomorphism of coherent sheaves, defined over
some open subset V of M, then the induced maps ¢y: F(U) + G(U) are

continuous for every open subset U c V,

Proof. The existence part of the theorem follows from the
discussion preceding Definition 7.3.7. For the uniqueness it is eas-
ily seen that it is enough to verify that conditions a) and b)
determine the Fréchet space structure on F(U) for U C-admissible. If
U is C-admissible we have an exact sequence

Bu

t
0+ R(U) —2>0P(U) —L>F(U) 0 .

Condition b) implies that 8y, t, are continuous. Condition a)
determines the topology on R(U), 0P(U) and hence, by the open mapping
theorem, the topology on F(U). 0
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Remark. Our discussion of the Fréchet sheaf structure on
coherent sheaves is based on Gunning and Rossi {1]. For much more
extensive treatments of the topologisation of spaces of sections of
coherent sheaves over complex manifolds and analytic sets see Gunning
and Rossi (1] and Grauert and Remmert [1]. In the latter text a very
nice characterisation of the Fréchet sheaf structure on coherent
sheaves is given based on the Fréchet space structure on the stalks

(see Exercise 4, §6, Chapter 3).

Lemma 7.3.9. Let U and V be open subsets of M and suppose

V c U, V compact. Then Tyt 0P) » OP(v) is compact.

Proof. Montel's theorem. 0

Lemma 7.3.10. Let F be a coherent sheaf on M and suppose
that U, V are open subsets of M with Ve u, v compact. Then

: F(u) » F(V) is compact.

!‘vu H

Proof. First suppose U is C-admissible. We have a commutative

diagram of continuous maps

oP () > F(U) 0
l Tvyu l Tyu
0P(v) > F(V) >0 .

Since Tyt 0P (u) + OP(V) is compact, Lemma 7.3.9, it follows that
Tyt F(U) » F(V) is compact.

For the general case, choose covers {Uj: j=1,...,n},
{vj: j=1,...,n} of V by C-admissible sets such that V, c uj is
: F(u

compact and Uj cU, j=1,...,n. Then r ) + F(VJ) is compact

v, Uy 3
and so therefore is 3
n n n
Ty y 2 TUF@) > TT Fevy)
j=1 373 =1 =1
~ a ~

Set U = jt& Uj' The map r,: F(U) + F(V) factors through TTrijj and
8o is compact. Hence r, .. = r ~r~ 1is compact. 0

vu vu uu
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Theorem 7.3.11. Let F be a coherent sheaf on the compact
complex manifold M. Then dimbHO(M,F) < o,

Proof. Take U=V = M in Lemma 7.3.10 and apply Theorem 7.3.3.

8]

Theorem 7.3.12. (Cartan-Serre). Let F be a coherent sheaf
on the compact complex manifold M. Then dithq(H,F) <® q20.

Proof. Choose Leray covers U = {Ul""'un}' u* = {Ui,...,Ut"}
of M for F such that 55 c Uj' j=1,...,n. For p 20, let

c? = @Fw,

where the (finite) direct sum is taken over all distinct (p+l)-tuples
8 = (so....,sp) of integers satisfying 1 s so....,sp S n. By

Lemma 7.3.1, CP has the structure of a Fréchet space. Now CP(U,F)
clearly defines a closed subspace of c?P (remember that CP(U,F) is the
space of alternating cochains). Hence, cP(U,F) has the structure of a
Fréchet space. Similarly, cP(U',F) has the structure of a Fréchet
space. Let R: CP(U,F) » cP(U',F) denote the restriction homomorphism.
By our assumptions on the covers U, U' and Lemma 7.3.10, R is compact.

Since the covers U, U' are Leray for F, the natural map
2Pu,Fy ~ 2P, Fy /8Pt P
is surjective and so
PPy 0 2P, Py 2R aP .y

is surjective. But now take A = D®R, B = -0@R in Schwartz' finite-

ness theorem (Theorem 7.3.5) and we see that
WP,F) = WP@',F) = cP ' F) 0 2P(u,F) /In(D)

is finite dimensional. O
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Remarks .

1. We shall give an important application of the finiteness theorem
in §5.

2. For generalisations of the finiteness theorem to coherent
sheaves over compact analyitc spaces see Gunning and Rossi [1] and
Grauert and Remmert {1] (the original theorem of Cartan and Serre was

proved for compact analytic spaces).
Exercises.

1. Show that the finiteness theorem of Cartan-Serre is an
immediate consequence of Grauert's direct image theorem (look at

constant maps).

2%, (Gunning [2], Grauert and Remmert [1]). Let (U,$) be a chart
on the compact complex manifold M suchthat ¢ mapa U biholomorphically
onto a polydisc in ™ (m = dim(M)). Set Oh(U) = LZ(U) and note that
Oh(U) has the structure of a Hilbert space (§6, Chapter 2; Oh(U) will
depend on the chart map ¢). Given a coherent sheaf F on M, show how
to define the space Cg(U,F) of square integrable cochains on U, where
U will be a cover of M by open polydiscs, and prove that CE(U,F) has
the structure of a Hilbert space. Let HE(U,F) denote the correspond-
ing cohomology group defined using square integrable cochains and
prove that ﬁK(H,F) & ﬁp(M,F), p 2 0. Finally deduce the finiteness
theorem of Cartan-Serre by using the elementary finiteness theorem
of Schwartz for Hilbert spaces (we shall prove this finiteness
theorem in the appendix to Chapter 10).

§4. The finiteness theorem of Grauert.

Suppose that M is a strictly Levi pseudoconvex (s.L.p) domain
in M and that F is a coherent sheaf on ﬁ. In this aection we shall
prove the theorem of Grauert that the cohomology groups HP(M,F) are
finite dimensional C-vector apaces, p 2 1. As in the proof of the
finiteness theorem of Cartan-Serre, we shall make use of Schwartz'

finiteness theorem. We use Grauert's finiteness theorem in §6 to give
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a proof of Kodaira's embedding theorem and again in Chapter 12 to

construct real analytic embeddings.

Let | § denote the standard Euclidean norm on Gn and E(r)
denote the open Euclidean disc centre 0, radius r in mn. Given an
open subset U of Gn we let C%(U) denote the space of C2 1R -valued
functions on U which, together with derivatives up to order 2, are

bounded on U, Define a norm on C:(U) by

lol = sup(Bp (01 + ID% 1), ¢ € C2CW).

xeU
(|D [ l denotes the polynomial norm of the bilinear map D ¢ That
is, ID ¢xl = gup ID ¢ (v )I - gee Dieudonné (1) or Field [1]).
fvi=1

Recall from §10 of Chapter 5 that the Levi form L(¢) of a C2 R -valued
map ¢ is the Hermitian quadratic form 330 given in local coordinates

aZQ
by the matrix = .
821821

Lemma 7.4.1. Let ¢ be a C2 R -valued function defined on some
neighbourhood of 0 in Gn. Suppose that for all x ¢ ¢-1(0), we have
dd(x) # 0 and L(¢)(x) positive definite. Then there exists r > O and
an open neighbourhood N of ¢ in C%(E(r)) such that

1. For all Y ¢ N and x ¢ w’l(O), dy(x) # 0 and L(Y)(x) 1is positive
definite.

2. Por all y € N, E(s) n {z: y(2) < 0} is Stein, 0 < 8 S r.

Proof. Choose R > 0 so that ¢ is defined on an open neighbour-
hood of E(R). Certainly ¢|E(R) ¢ C2(E(R)) and moreover there exist
C(¢),M(¢) > O such that for all z ¢ 0 (0) n E(R) we have

Ido(z)d > C(¢) oo (*)

L) (2)(v) > M@)IviZ, v ea™.

From now on assume that ¢ is defined on E(R) and that (*) holds. By

scalar valued Taylor's theorem, we have for y € ¢-1(0) and z ¢ E(R)
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2
. 2 - 20 - -
¢(2) 2Re[§ oz, y)(zg-y,) + 1?_’1 aziazj(")(zi v4) (2 yj)]

+ L(¢) (y)(z-y) + R¢(z.y)’

where R, (z,y) = 1/2 (D () D ¢ )((z-y) and 0 < B8 < 1. Since
2 ¢ y+8(z-y)

¢ is C°, there exists r > 0 such that ID 0 -D 0 I s M(¢)/2 for all

y € E(r). Consequently for y e ¢ (0) n E(r), z € E(r) we have

IRy(zn | s M8 1z-yi?,
Hence
(oot LOGIEmy) + Ry (2,9) > !4_02L) 1z-y12, y € ¢ 2(0) nE(r), zeE(r).

Estimates (*), (#) are open conditions in CZ(E(r)) and so there
exists an open neighbourhood N of ¢ in C (E(r)), such that (*), (#)
hold for all Y ¢ N. We claim that our choice of r, N implies the
remaining statement of the Lemma. Let y ¢ N. We must prove that
D_(¥) = E(s) n{z: Y(z) < 0} is Stein, 0 < 8 s r. For this it is
enough to prove that DB(W) is holomorphically convex. Suppose that
{yn: n 2 1} 1s a discrete subset of D_(}) converging to the point
y € BDB(W). If y € E(s), there certainly exists f ¢ A(E(8)) which is
unbounded on {yn). So suppose Y(y) = 0 and let

Fy(a) = | 2 ey + EJ Wf? 9 (24-3,) (24-3,) -

The quadratic polynomial Fy(z) is non-vanishing in DB(W). Indeed, if
Fy(z) = 0 and Y(z) < 0 we would have from the Taylor expansion of y at
y that L(Y) (y) (z-y) + RWS;'Y) < 0, violating (#). Observing that
Fy(y) = 0, we see that Fy € A(DB(W)) and is unbounded on any sequence
of points of DS(W) converging to y. Hence Dg(}) is holomorphically
convex, 0 < 8 S r. 0

Theorem 7.4.2. (Grauert [3]). Let M be an s.L.p. domain in M.
Then for any coherent sheaf F on M we have dimcHP(H,F) <o, p21.

Proof. Let ¢ € C; (M) define M. That is, we suppose
M= {ze¢ M: ¢(z) < 0}, do ¢ O on 3M and L(¢) is positive definite on
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oM (see §10, Chapter 5). Since 9M is compact, we may find a finite
open cover {Uiz { =1,...,n} of 3M, biholomorphic maps y,: U, -+ E(r,)
and open neighbourhoods N, of ¢YI1 € Cg(E(ri)) such that the
conclusions of Lemma 7.4.1 hold for ¢Y;1. T, and Ni' i=1,...,n. In
particular,nthe open sets Ui (respectively U1 n M) will be Stein open
subsets of M (respectively M). Choose 0 < 8, <1, 80 that

v, = YII(E(si)): i e1,...,n} is an open cover of M. By the
openness assertions of Lemma 7.4.1, we may clearly inductively choose

positive functions ny e C:(Ui). 1 <1 < n, such that
1 -1
1. (@ = 2 ni)Yj € le r,j =1,...,n0.
i=]
2, ny is strictly positive on V4 n oM.

Set ¢5 = ¢, °j =-¢ - § ng, 1s3sn. Observe that, d¢j ¢ 0 on
i=1

¢51(0) and L(§,) s positive definite on ¢;1(0), 0<4sn. Set
Mg = M, Mj = (z: ¢j(z) < 0}. We see that

n
M-MOCMIC...CMnciuluia

Moreover, M i8 relatively compact in Mn since on is strictly negative
on oM.

Step 1. The natural restriction map HP(M Hp(Mj.F) is

j410F) >
surjective, p 2 1.

Fix j, 0 s J <n. For 1l <4i < n, define

W= UinM, 14341

= U 1=3+1,

341 " My

Observe that wi - wi unless 1 = j +1 and that, by Lemma 7.4.1, "1' wi

are Stein open subsets of ﬁ. Adjoin Stein open subsets

- - = ' - '
Wil w;+1..... "P w; of M so that W {wl.....wp}. w (wi.....wp}
are open covers of Mj' M +1 respectively.

3
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141

Figure 1.

The covers W, W' are Leray covers of M for F. Observe that

30 My
any p-fold intersection of distinct elements of W is equal to a

p-fold intersection of elements of W' provided only that p > 1. Hence
Pw,F) = ZPW',F), p 2 1.

Therefore the natural restriction map HP(W',F) + HP(w,F) 1s

surjective. Step 1 now follows by Leray's theorem.

Step 2. For 1 s j < n, set "j = Vj nM W =U n M and

h] B
observe that “j is a relatively compact subset of wi. Choose Stein
Al \J
open subsets wn+1,wn+1,...,wp.wp of M so that WJ is a relatively

compact subset of wj, n+l s j s p, and W = (wl....,wp},
W' = (ui,...,w;} are open covers of M, Mn respectively. Just as in
the proof of the finiteness theorem of Cartan-Serre the restriction

map

R: 2P, P+ 2Pw,p
is a compact operator between Fréchet spaces. From Step 1, the
restriction map.Hp(w',F) - Hp(w,F) is surjective, p 2 1, and so, for

p 2 1, the map

per: cPLw,F)ezPW' ,F) + zPW,F)
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is a surjective map between Fréchet spaces. Taking A = D @R,
B = -0 ®R in Schwartz' finiteness theorem we deduce the finiteness of
wWw,p, p 21. 0

Theorem 7.4.3. (Grauert [3]). An s.L.p. domain is

holomorphically convex.

Proof. Let M be an s.L.p. domain in M. It is enough to show
that given p ¢ aM, there exists f € A(M) which is unbounded on any
sequence of polnts of M converging to p. The method described in
Exercise 2, §2 will not work here as the ideal sheaf of an infinite
discrete subset of M does nmot extend to a coherent sheaf on M. Our
proof follows that in R. Narasimhan [3]. As in the proof of
Theorem 7.4.2 we suppose M is defined by the 02 function ¢. By
Lemma 7.4.1, we may choose an open neighbourhood U of p in M,
biholomorphic map y: U + E(r) and neighbourhood N of ¢Y-l in Cg(E(r))
such that for all WY- e N, D (w) = {z: P(z) < 0} is Stein Choose
ne C (U) such that n is positive, n(p) > 0 and (¢ - n)y e N. Let
M= (z € M: #(z) -n(z) < 0}. Certainly M 5> M. As in the proof of
Lemma 7.4.1, there exists F ¢ A(U) such that F(p) = 0 and F is non-
zero in D_(¢). Take the open cover U= (unf, \F_l(O)] of M.

Since the natural map H u, OH) + B (M Oﬁ) is 1njective (Exercise 4,
§3, Chapter 6), and ¥ is s.L.p., we have dian w, 0~) <®, Let L
denote the infinite dimensional linear subspace of Z u, Og) defined
by

L = { z ch-j: cy € ¢ and all but finitely many cj's are zero}.
i=1

Since dimﬁﬂl(u,oﬁ) < o there exist elements of L which are boundaries.

Therefore we may find a combination
n
G = Z ng_j €L,
with not all the gj's vanishing, such that G = D(H), for some
He C u,0y ) Hence there exist HyeO(V nil), HIEO(M\F (0)) with

G =Hy -Hyon (waf)\r~ ( ). That is, we have

iy -1 |
Hy = Hy+ 21 ng on (UnM) \F (0).
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Clearly f = HllM ¢A(M) is unbounded on every sequence of points of M
converging to p. 0

We may now give a solution to Levi's problem.

Theorem 7.4.4. An s.L.p. domain of a Stein manifold is Stein.

Proof. Immediate from Theorem 7.4.3. 0
Remarks .

1. Suppose that  is a Levi pseudoconvex domain in Gn which is not
s.L.p. Then it can easily be proved that Q is the union of an
increasing family of s.L.p. domains (see Oka [1] or Gunning and Rossi
[1; Lemma 2, Section D, Chapter 10]). Hence, by Theorem 7.4.4., §
is the limit of an increasing family of domains of holomorphy and so,
by a theorem of Behnke and Stein [1], a domain of holomorphy (see also
Gunning and Rossi [1; section D, Chapter 10]). This result was first
obtained by Oka in case n = 2 and then for general n independently by
Oka [1], Bremermann [1] and Norguet [1]. Their result generalises to
the case when ! is a Levi pseudoconvex domain of a Riemann domain
spread over g" (see Gunning and Rossi [1; section D, Chapter 10]).
Moreover, it is not necessary to assume that the boundary of Q is
smooth. All that is required 1s that the function -log(d(z,3Q)) is
plurisubharmonic in Q (see the above references and also Hormander
[1]). It is not generally true that a Levi pseudoconvex domain of an
arbitrary complex manifold is holomorphically convex. For an example
of a non-holomorphically convex Levi pseudoconvex domain see Grauert

[4] and also the survey article by Siu [1], especially §7.

2. R. Narasimhan [4] has shown that if M is a complex manifold
then dim HP(M,F) < o, p 2 1, for all coherent sheaves F on M if and
only if M is holomorphically convex. The proof that finiteness of
cohomology implies holomorphic convexivity is similar to that
indicated in Exercise 2, §2 and makes use of the observation that the
space of bounded infinite sequences of complex numbers is of infinite
codimension in the space of all infinite complex sequences. The
converse is much deeper and uses Grauert's direct image theorem
together with results of H. Cartan [3] and Remmert [1] to the effect

that if M is holomorphically convex then M possesses a maximal non-
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trivial compact analytic subset, A. Narasimhan proves that the
inclusion A + M induces isomorphisms Hp(A,FA) + WPM,F), p2 1. The
finiteness theorem of Cartan-Serre for compact analytic spaces then
gives the result. 1In particular, M will be Stein if and only if M has
no non-trivial compact analytic subsets. See Rossi [2] for a

discussion of the case of s.L.p. domains.

3. Suppose M is a strictly pseudoconvex manifold. That is, there
exists a C  function ¢: M+ IR such that L(¢) is everywhere positive
definite and M_ = {z € M: ¢(z) < a} is relatively compact for all
ae R. By Sard's theorem, M, is s.L.p. for a dense set Lc R of
values of a. Now it can be shown (see Gunning and Rossi [1l; Section
C, Chapter 10]) that plurisubharmonic functions satisfy a maximal
principle and so M cannot have any non-trivial compact analytic
subsets. It follows from Remark 2 that M, is Stein, a ¢ L. Thus we
have expressed M as a union of an increasing family of Stein manifolds
parametrized by points in a dense subset of IR. It is shown in
Docquier and Grauert [1] that this is enough to prove M Stein. See
also Siu [1] and note that it is not generally true that an increasing
union of Stein open sets, parametrized by the positive integers, need
be Stein. Of course the union will be Stein if all the sets are
domains in C" or a Riemann domain (see Remark 1). If they are all
subdomains of a Stein manifold it is not yet known whether their
union must be Stein (see also Markoe [1]). We shall prove in Chapter 11
that every strictly pseudoconvex manifold is Stein. Our proof will
depend on the existence theory for the §-operator and follows the
approach of Kohn [1], Andreotti-Vesentini [1], Hormander [1] and
Vesentini [1].

Exercise. Let M be an s.L.p. domain in the complex manifold M
and suppose that M has c? defining function ¢. Show

a) There exists C > 0 such that “c = {x € M: ¢(x) < -c} 1s s.L.p.
for 0 s ¢c < C.

b)* If M has no non-trivial compact analytic subvarieties then M.
is Stein, 0 < ¢ < C (See Rossi [1] and note that we do not need to

assume a maximal principle for strictly psh functions).
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§5. Coherent sheaves on projective space.

In this gection we shall prove theorems A and B of Serre for
coherent sheaves on projective space. These fundamental theorems
play a similar rdle in the theory of projective varieties to that of

Cartan's theorems A and B in Stein manifold theory.

Throughout this section U = {Ui} will denote the standard open
cover of P"(C) by the open sets U, - {(zo,...,zn): z, ¥ 0}, 0 <1 <n.
Suppose that F is a coherent sheaf on P"(g). Since each Uy is
biholomorphic to @" and is therefore Stein, U is a Leray cover of

P™(¢) for F. It follows immediately from Leray's theorem that
P (P"(e),F) = 0, p > n.

Let H denote the hyperplane section bundle of P“(¢). Relative
to the cover U, H has transition functions ¢1j = zj/zi. For me Z,
we let H" denote the holomorphic line bundle with transition functions
(zj/zi)m on Uij‘ We may regard H™ as the line bundle associated to
the divisor zj = 0. That is, if we let P"1(¢) < P"(@) denote the
hyperplane zg = 0, we have H® = [m.Pn-I(G)]. With this convention,
H™ has the "canonical” section s™ given locally by
sT = (zo/zi)m and div(sm) = m.Pn-l(G).

As is conventional, we let (O(m) denote the sheaf of germs of
holomorphic sections of Hm, m e Z.

Lemma 7.5.1. Let I be a hyperplane in P*(C). For m ¢ Z, we

have a non-zero O-morphism
ot O(m) + O(mt1)

satisfying ¢Z 2" 0 if and only if z € L. In particular, ¢z restricts
’
to an isomorphism of O(m) with O(m+l) over PM(@) \ L.

Proof. Let I have equation s(zo,...,zn) = 0. Define
bp(f) = s f, fe 0(m),. o

Remark. The morphism ¢; 1s given locally by ¢£(f1) = fis/zi,
£, € O(m)(Uy).
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Let p(m)(mn-l-l

degree m on ¢n+1. Then (Proposition 5.9.2),

) denote the space of homogeneous polynomials of

1" @),0m) = p™ ™, m2o0

= 0, m«<0.
Theorem 7.5.2.
1. For m 2 0, we have
") ,0(m) = 0, p#0
x p™ @™y o <o,
2. For m < 0, we have

P "), 0m) = 0, p#n

~ P(-m—n-l)(mn+1)’ p = n.

Proof. Since we have already covered the cases p = 0, p > n,
we shall assume from now on that 1 s p < n. Let us start by consider-
ing the case m = 0. Suppose c ¢ 2P(U,0). Then
c = {c(8) = c(so,....ap)}, where c(s): U, + ¢ is holomorphic and
8 = (so,...,sp) is a (p+l)-tuple of (distinct) integers lying between

0 and n. We may regard each c(s) as a holomorphic function on

Us [S an+1 which is homogeneous of degree zero. By Theorem 2.1.10, we

may take Laurent expansions of the c(s). Thus

4
To n

C(s)(ZO"'-’zn) = 2 C(s)r ..'rnzo ...Zn

ro+...+rn=0 0

= c(s)rzr. using multi~index notation.
|r{=0

Observe that the coefficient c(s)r

will be zero if any rj <0
0'**Tn

with j ¢ {so,....sp}. Define

1 +
a(so,...,sp_l) - ;:;II E' c(j,so,....sp_l) ,
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where L' denotes the sum over all j ¢ {80,...,sp_1} and

c(j,so,...,sp_l)+ is the holomorphic function on Us Neoo nU with

8
Laurent series 0 p-1

€(J,8nsee-r8 ) 2.
h}_o 0 p-1'r

rjzo

That is, we omit terms from the Laurent expansion of c(j,so,...,s

p-l)

having Ty < 0. Our construction defines an element a ¢ cp'l(u,o).

Now

1 ' _ +

(Da)SO...SP e, 9 (c(j,sl,sz,...,sp) oo c(j,so,...,sp_l)) )
1

n-p+l

(X'c(so,...,sp))+, since Dc = 0
= c(so,...,sp).

We have shown that ZP(U,O) = DCP-I(U,O) and so HP(U,O) =0, p>0.

Exactly the same proof shows that if m > O then HP(U,O(m)) =0,
p > 0. Indeed, the only difference is that a cochain will now be a
collection of holomorphic functions which are homogeneous of degree m.
The same proof also works for m < O provided that p < n. We conclude
by considering the case p = n, m < 0. Suppose ¢ ¢ Z"(U,0(m)). Then

+C

¢ U01...n

is holomorphic and homogeneous of degree m. Thus

c(zo,...,zn) = 2 c .z .
Jr|=m
L r
Write ¢ = Co + Cl, where Co is the sum over all terms c Zg +.-2
Tge+Th n

where at least one index rj is positive and ¢ is the sum over terms

n

such that every index ry is negative. Notice that ¢ = 0 if -m S n,
As above it is easily seen that Cy = Da for some (n-1)-cochain a. A
simple Laurent series argument shows that a non-zero C1 can never be a

coboundary. So suppose m < -n ~1 and set
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E = { § c.2f:t e €@, every index r, < 0}.
Jefem & T .

By what we have shown above E ® Hn(U,O(m)). Given ¢ ¢ E, we may write

-1 r0+1 rn+1
c = (zo...zn) 2 I Cr2g  -eeZg
Tgreensty

r°+...+rn-m+m+1
It follows that H'(U,0(m)) =~ p{~™P-1) (gl
given explicitly by mapping P ¢ P

) where the isomorphicm is
(—m—n-l)(c) to

c(2gsererz) = (zo...zn)'lp(zal,...,z;l). o

Remark. For an alternative proof of Theorem 7.5.2, using
non-trivial facts from the Hodge theory of Kahler manifolds, see
Seminar 18 by Serre in H. Cartan [2].

Given a coherent sheaf F on P"(G) we let
F(m) = FOOO(m), me Z .

We call F(m) the sheaf F "twisted by O(m)". One feature of twisting
is that we expect dimcHO(Pn(G),F(m)) to be an increasing function of
m. To explain why this should be so, let us consider the case when F
is the sheaf of sections of a holomorphic vector bundle E. We claim
that HO(P"(@) ,E(m)) = {s ¢ M(E): div(s) + m.P"1(C) 2 0}, Certainly
it follows from this isomorphism that dimuHO(Pn(ﬁ),E(m)) is an
increasing function of m. Suppose that E has transition functions
°ab relative to a cover W of P“(c) where we suppose that ¥ is a
refinement of U. Let & ¢ M*(E) and div(s) + m.Pn-l(G) 20, If

8, € M*(wa) is the local representative of 8 on Wy, ¢ ui(a)' we have
m
(zolzi(a)) 8, € A(Wa).

Clearly 1if wb c Ui(b)’ we have

m
bab (21 (b) 21(a))" 20/ 21 (5)) % = (20724 (a))"%a O Vigp-
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Therefore {(20/21(3))msa} defines a holomorphic section of E(m).
Reversing the argument shows that every holomorphic section of E(m)
gives rise to a meromorphic section of E such that

div(s) + m.Pn-1(¢) 2 0. Of course, our argument depended on being
able to show that E admits at least one non-trivial meromorphic

section.

Remark. We should point out that a holomorphic vector bundle
E on p“(c) always restricts to a holomorphically trivial bundle over
Ui, 0 s 1 s n, Serre [2]. This fact also follows from a general and
difficult theorem of Grauert to the effect that a holomorphic vector
bundle on a Stein manifold is holomorphically trivial if and only if
it is topologically trivial. See also Adams and Griffiths [1] for a
proof that holomorphic vector bundles over polydiscs in ¢" are holo-
morphically trivial as well as references and discussion concerning

Grauert's theorems.

Theorem 7.5.3. (Theorems A and B of Serre). Let F be a
coherent sheaf on Pn(G). Then there exists my = mo(F) e Z such that

A. For each z ¢ Pn(G), HO(P“(¢),F(m)) generates F(m)z as a
Gz-module, m 2 my.

B. For m2 my, P (P" (@) ,F(m)) = 0, p 2 1.

Proof. (Seminar 19 by Serre, H. Cartan [2]). We start by
looking at some special cases. Suppose F = 0(q). Take my = -q.
Since O(q)(m) = 0(q+m), we see immediately from Theorem 7.5.2 that
WP (" @),F(m)) =0, p2 1, m2 m,. Clearly for all z ¢ P"(0),
Ho(Pn(G),F(m)) generates F(m)z, m 2 mgy. Sincﬁ cohomology commutes

with direct sums, A and B hold whenever F & GB 0(81) and we may take
i=1
my = -min{ai}.

We prove the theorem in general by an induction on n. Let An,
Bn denote statements A and B for dimension n. We shall show that
An-l and Bn—l imply An and An implies Bn. The Theorem is, of course,
trivial for n = 0.

Step 1. An-l and Bn—l

hyperplane I c P™(C) not containing z. Form e Z, let

imply A Let z € P"(C) and choose any
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;Z = 1d Oﬂbz: f(m) + F(m+1), where oz is the map given by Lemma 7.5.1.
Observe that ¢Z restricts to an isomorphism of F(m) with F(m+1) over
P (@) \ L. Suppose H (P w, F(mo)) generates F(mo) Then

H (P"(¢), F(m)) generates F(m), for m 2 my. Indeed, ¢Z mO: F(mo) + F(m)
restricts to an isomorphism over P (@) \I and so maps any set of
generators for F(mo) to a set of generators for F(m) Let A (2)
&espectively A (z)) be the statement "There exists my = mo(F,z) such
that H e 0, F(mo)) (respectively H "), F@m))) generates F(mo)
(respectively F(m),, m 2 mo)". By the coherence of F, An(z) implies
An(y) for y in some open neighbourhood of z. Since A,(y) implies
A;(y), it follows from the compactness of P"(g) that An(z) for all

z € P(C) impies An. Therefore it is enough to prove that A and

n-1
Bn-l imply An(z).

Without loss of generality suppose z ¢ Pn-l(c) c Pn(c). Set

: F(-1) + F and let
(c)

¢ = ¢Pn_1

K = Ker¢: F(-1) » F

G = Coker ¢: F(-1) -+ F.
We have the exact sequence
0+K»F(-1) 25F26ao0.
Tensoring with 0(m) we obtain the exact sequence
¢m
0 + K(m) » K(m-1) ——> F(m) + G(m) » O.

Uy = GUo = 0. Let i denote
the inclusion map of Pn-l(G) in Pn(G). For any sheaf H on Pn(G) we
let H* = 1_1H denote the restriction of H to P“'l(c). Observe that

T __ c0 acts trivially on K and G. Indeed if 8 € I ,
loy @ A )
f, € K, then szfz = 0 since K = Ker(¢). Similarly for G since

G = Coker(¢). Hence K*, G* have the natural structure of

Since ¢ _|U. is an isomorphism we see that K
m 0

0 11 =0* /I* | ~-wmodules and the reader may easily verify
P (@) P(@C) P T(0)
that K*, G* are coherent ( n-1 -modules. Moreover, it is clear that
(@)
K(m)* & K*(m), G(m)* = G*(m), m e Z.
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By Exercise 12, §3, Chapter 6,
#P(#"(@),k(m) = 1" (@),k(m)*), p 2 0, similarly for G(m).
Applying our inductive assumption to K*, G*, there exists m e Z
such that for p 21

HP(P"(0) k@) = HPC"H(@),k¢m) = 0, mam

W@ ,6m) = KPE N (0),6t@) = 0, mzm.

We have the short exact sequences

0 +» K(m) » F(m=1) » Im(¢m‘_1) +0

0 » Im(¢m_1) + F(m) » G(m) » O.

Taking the cohomology sequences of these short exact sequences we

obtain the exact sequences
(7@, F(m-1)) » B (@), Tm(6,_1)) » H2(R™(0) ,K(m))
L"), Ime 1)) » BLEP(@),F (@) » B (B"(@),6(m).

Since Hl(Pn(c),G(m)), Hz(Pn(c),K(m)) =0, m> m, we see that

dimgh! (P2(0) ,F (m-1)) 2 dimg! (B"(@),Im(6_ 1)) 2 dimgh! (P"(@) ,F(m)),
for m 2 m. Hence dimGHI(Pn(c),F(m)) is a decreasing function of m,
m 2 m,. But now by the finiteness theorem of Cartan-Serre,
dimmHi(Pn(G),F(m)) < », and so we deduce that dimaﬁl(Pn(G),F(m)) is

independent of m for m > m,, say. In particular, for m 2 m, we have
1, n 1l1,.n l1,.n
dimgH™ (P7(C) ,F (m-1)) = dimgH™ (P7(C),Im(¢_ ,)) = dimgH (P (C),F(m)).

Since the surjective homomorphism Hl(Pn(G),Im(Om_l)) - Hl(Pn(G).F(m))
is between spaces of the same finite dimension, it must be injective,
m 2 my. Therefore, from the cohomology sequence we see that
Ho(Pn(G),F(m)) > HO(P“(G),G(m)) is surjective, m 2 m,. But
Ho(Pn(G),G(m)) = HO(Pn_1(¢),G*(m)) and so by A _, ve see that
Ho(Pn(c),G(m)) generates G*(m)z = G(m)z for m 2 mg, where we may
suppose my 2 m,. In particular, Ho(Pn(G),F(m)) generates G(m)z for
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m2 my. We claim that for m 2 mg, Ho(PnGE).F(m)) generates F(m)z.
Suppose z ¢ Ui’ i 0. Let y: F +» F(1) be the homomorphism defined
by Y(f) = zif. As described above, w-m restricts to an isomorphism
of F(m)Ui with Fui. Under this identification of F(m)Ui with Fui’
the map ¢ corresponds to multiplication by ty = zo/zi and G(m)z is
therefore identified with Fz/tofz. Let M c Fz be the submodule
generated by the elements of HO(P"(C),F(m)). Since G(m), is
generated by the elements of Ho(PnGI).F(m)), m2 mg, the image of M,
in Fz/ton is the whole of Fz/ton. That is, Fz = ton + Mz. Since

tpem, c Oz. it follows from Nakayama's lemma that F, = M,.
Step 2. A, implies B

For p > n, we have already shown that Hp(Pn(G),F(m)) = 0 for
all m. We prove Bn by decreasing induction on p. So suppose that
for every coherent sheaf F on PM(f), there exists my = mo(F. p) such
that Hp+1(Pn(¢),F(m)) =0, m>2 mg- By An there exists m ¢ Z such
that HO(PnGI).F(m)) generates F(m)z for all z ¢ P"(C). Choose a
basis 8yseeesBy of HO(P“(G),F(m)). We have the exact sequence

0+K-+0%-25Fm) » 0,

where g = (31.....sk) and K = Ker(s). Tensoring by 0(q) yields the

exact sequence
0+ K(q) » 0%(q) » F(ukq) » 0
and corresponding portion of the cohomology sequence
HP(P"(0),0%(9)) » HP(P"(@) ,F(m+a)) » ML (PP(0) K (a)).
By the special case of B described at the beginning of the proof,
Hp(Pn(G),Ok(q)) =0 for p> 0, q 2 0. By our inductive assumption,
Hp+1(Pn((I),K(q)) = 0 for sufficiently large q. Hence

Hp(Pn(G).F(m~+q)) = 0 for sufficiently large q. This completes the
inductive step and the proof of the theorem. 0
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Remark . The reader should note the crucial role played by
the finiteness theoren of Cartan-Serre in the proof of Theorem 7.5.3.
In §6, we give another proof of Theorem 7.5.3 depending on Grauert's

finiteness theorem.
Now for some applications of Serre's theorem.

Theorem 7.5.4. Every holomorphic vector bundle E on P"(¢) has

a non-trivial meromorphic section.

Proof. By statement A of Theorem 7.5.3, there exists mg
such that Ho(Pn(m) E(mb)) generates E(mo) for all z ¢ Pn(G) In
particular, dithO(P @), E(mo)) 2 1. But as we showed earlier,
#(P"@) ,E(mp)) % {s € M(E): div(s) + my.P"" @) 2 0. 0

Remark. Of course, we can prove much more than that E has a
non-trivial meromorphic section. Using statement B, we can show that
for any v ¢ Ez, there exists 8 ¢ M*(E) such that 8(z) = v. See the

exercises at the end of the section.

Theorem 7.5.5. (Chow's theorem). Every analytic subset of
Pn(c) is algebraic.

Proof. Let X be an analytic subset of P"(g) with ideal sheaf
I. Then I is coherent subsheaf of 0 (see 81 for discussion and
references). We prove: Given z ¢ Pn(c) \ X, there exists a homogeneous
polynomial p = p(zo,...,zn) which vanishes on X and does not vanish at x.
Granted this, we consider the set of all homogeneous polynomials which
vanish on X. The common zero locus of these polynomials is X and by the
Hilbert basis theorem we may choose a finite subset of these polynom-

ials with common zero locus X.

Suppose then that I denotes the ideal sheaf of Xvu{z}. For

m € Z, we have the exact sequence

(S lz(m) +1+¢(z)(m) +0,

where ¢(z) is the skyscrapper sheaf supported at z. Note that
¢(z)(m) = ¢(z). By B of Theorem 7.5.3, there exists L such that
Hl(P“(m),Iz(m) = 0, m 2 m;. Taking the cohomology sequence of our

short exact sequence we obtain for m 2 my the exact sequence



183.
10" @) ,1(m) + 10E"(@),e(2) (m) ~ 0.

Now HO(P“(G),Q(Z)(m)) § ¢ and so there exists p ¢ Ho(Pn(c),l(m)) such
that p(z) # 0. But since I ¢ 0, it follows that Ho(Pn(c),l(m)) is a
subspace of HO(P“(Q),O(m)) x P(m)(cn+1). Indeed, it is just the
(non-empty!) subspace of homogeneous polynomials of degree m which
vanish on X. 0

Remark. Chow's theorem is a special instance of a general
relationship between global analytic and algebraic structures on
projective space. This relationship is explained fully in Serre's
G.A.G.A. paper, Serre [3]). 1In particular, Serre shows that there is
an equivalence between coherent algebraic sheaves and coherent
(analyitc) sheaves on projective space. Chow's theorem is one
corollary of this correspondence. Another is that every holomorphic

vector bundle on projective space is "algebraic'.

Theorem 7.5.6. Let F be a coherent sheaf on P"(¢). Then F
has a resolution

0~ + E + ... +E. +F=+0

Ea> By -0
by locally free sheaves. We may require that for 0 < j < n the
sheaf Ej is isomorphic to a direct sum O(aj) j.

Proof. Just as in the proof of Step 2 of Theorem 7.5.3,
statement A of Theorem 7.5.3 implies that there exiats an exact

sequence
k0
0 -+ K1 +0 Y > F(mo) + 0.

Setting F = Ko and iterating this construction we obtain for 0 < j < n
exact seqeunces

k

-+ - 3 > -+
0 Kj+1 0 Kj(mj) 0.

Tensoring each sequence by an appropriate power of ((1l) we obtain

exact sequences
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k
0+ Ky (e mmy) + 0 Yemg-o o oomp) = Ky(-mg=- -y 1) + 0

and hence a long exact sequence

k
n—l(pn—l) + ...+ 0 0(po) +F +0.

k
0~ Kn(pnﬂl) +0
The coherence of Kn(pn_l) together with the Hilbert Syzygy theorem
imply that Kn(pn_l) is locally free (see the proof of Corollary
7.1.8). 0

Remarks .

1. In the exercises at the end of the section we show how, in
certain casea, we can construct explicitly a resolution of a coherent

sheaf on r“(a) by locally free sheaves.

2. To appreciate the significance of Theorem 7.5.6 we first need
to discuss Serre'’s duality theorem. 1In Chapter 10 we shall prove
Serre's duality theorem for complex manifolds: Let M be a compact
complex manifold of dimension m and E be a holomorphic vector bundle
on M. Then HP(M,Qq(E)) is isomorphic (not canonically) to
Hm_p(M,Qm_q(Ef)). P»q 2 0. In particular, if q = O,

HP(M,E) = Hm-p(M._ISOE*), where K denotes the canonical bundle of M.
Serre duality plays an important role in complex analysis. In
particular, it gives an easy proof of the Riemann-Roch theorem for
compact Riemann surfaces (see Chapter 10). Suppose that M = Pn(a).
Then the canonical bundle of P"(C) is canonically isomorphic to H-n-1
(89, Chapter 5). Theorem 7.5.2 implies immediately that
HP(P"(C),0m)) = W"P(P"(0),0(-m) ®K), p 2 0, m ¢ Z. A simple
computation shows that we have a (canonical) Serre duality for any
sheaf on P“(G) which i8 a direct sum of sheaves O(m). Theorem 7.5.6,
together with some basic facts from homological algebra, now allows
us to verify Serre duality for any locally free sheaf on P"(C¢). Even
more, we may prove a duality theorem for arbitrary coherent sheaves
on Pn(G). However, the formulation of this duality theorem will now
involve "Ext'' groups. These matters are explained further in
Griffiths and Harris (1] and Hartshorne [1,2]. We should also mention
that Ramis and Ruget [1] and Ramis, Ruget and Verdier [1] have
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developed a general duality theorem applicable to analytic spaces and
proper analytic maps.

For the remainder of this section we make a preliminary study

of holomorphic vector bundles on projective space.

Proposition 7.5.7. The group of holomorphic line bundles on
P*(e) 1s isomorphic to the infinite cyclic group generated by the
hyperplane section bundle H.

Proof. First note that the group generated by H in HLB(P™(C))
is infinite cyclic. Indeed, HP 1s isomorphic to ¢ if and only if
Ho(Pn(c),O(p)) = ¢ and by Theorem 7.5.2 this happens if and only if
p = 0. It follows from the cohomology sequence of 0 +Z + 0 + 0* + 0
and the vanishing of H!(P"(¢),0), H2(P"(C),0) that

Hete,m 5 eeho), 2),
where the isomorphism is given by ¢y, lst. Chern class map. By

topology, Hz(Pn(c),Z) % Z, n21l. Let Pl(G) c Pn(C). We have the
commutative diagram

1, n c1 2,50 ~
wl(P"(0),0%) —L—>u2(e"@),2) = z
|- |
c )
wlele),0n) —L1——uiple), 2) = z

where the vertical maps are induced by inclusion. Now we know from
Example 13, §3, Chapter 6 that H generates HI(PI(G),O*). But r maps
the hyperplane section bundle of Pn(G) to the hyperplane section
bundle of P1(¢) and so c,r(H) generates H2(P1(C),Z). By the
commutativity of the diagram it follows that H generates Hl(Pn(G),O*).
0

We now work towards a classification of holomorphic vector
bundles on Pl(c). Suppose L € HLB(PI(C)) and 8 € M*(L). Now
deg(div(s)) is independent of s and depends only on L - §5, Chapter 1.
We set deg(L) = div(s), where s is any non-trivial meromorphic
section of L. By Proposition 7.5.7, L & #Y for some d ¢ Z. Since

nd admits a meromorphic section whose divisor had degree d, we see
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that deg(L) = d. Indeed, deg(L) = c;(L) = ¢, () = d, where we make
the usual identification of Hz(Pl(Q),z) with Z ., Suppose that E is
a holomorphic vector bundle on Pl(c) of rank k and let s ¢ M*(E)

(such sections exist by Theorem 7.5.4). Since the zeroes and poles of
8 are isolated points, div(s) is a well defined element of D(P1(¢))
(this would not be the case if E were a holomorphic vector bundle over
a complex manifold of dimension greater than 1). For each z ¢ Pl(c),
there exists fz € Mz. hz € _l._‘!z such that s, = fzhz and hz(z) ¢ 0.
Define a subset L% c E by L: - hzoz. Z ¢ Pl(c). It is easily
verified that [ is a locally free subsheaf of E of rank 1. Hence L®
is the sheaf of holomorphic sections of a holomorphic line subbundle
L® of E. By the construction s, ¢ M"(Ls)z for all z ¢ Pl(c) and so
we may regard s as defining a meromorphic section of | A Clearly the
bundle L® is uniquely determined by these conditions. Set

d(s) = deg(L%). We claim that max{d(s): s ¢ M*(E)} < ». Since

L® & 0(d(s)), we have dim HO(P'(¢),L®) = d(s) +1 (that is, the
dimension of P{4(®)) ¢2)y clearly, dimmno(pl(c),_z_) zdinhHO(Pl(G),Ls)
for all s ¢ M*(E). So if d(s) were unbounded, this would contradict
the finiteness of dinhHo(Pl(c),E). Set a = mxsd(s). Choose a
holomorphic line subbundle L of E of degree a;. Thus L = O(al) and

we have the exact sequence
0-»0(31) +E+F~+0,

where F = E/L is a vector bundle of rank k -1 on Pl(c).

Theorem 7.5.8 (Grothendieck). Let E be a holomorphic vector
bundle on P1(¢) of rank k. Then there exists a unique sequence

a)2...2a, of integers such that
E 5 0(a))0...00(a).
Proof. We prove by induction on k. Suppose true k-1. Then
as we showed above there exists a holomorphic line subbundle L c E of

maximal degree, say a), and exact sequence

*).... 0+0(a) +E+FE >0,
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where F is a holomorphic vector bundle of rank k-1. By the

inductive assumption
F ¥0(ay)e...00(a),8p2:-- 28,.

We claim al 2 az. If not, a, 2 al-bl and tensoring (*) by 0(-31 -1)

we obtain the exact sequence
0 + 0(-1) + E(-a; -1) + F(a; -1) » 0.

Taking the cohomology sequence, together with the vanishing of
HI(PI(G).O(-I)). we deduce that

~

W@t ©),EC-a, -1 5 10 @) E(-a) -1)).

k
Now _li(-al -1) s ?; O(Bj -a) -1). Therefore since a, -a; -120,

0 (P1(0),F(-a; -1)) # 0 and so0 E(-a, ~1) admits a non-trivial
holomorphic section. Hence E(--a1 -1) contains a holomorphic line
bundle isomorphic to Hp, p 2 0. Consequently, E contains a
holomorphic line bundle isomorphic to Hp+81+1 which is of degree
p+al+1. contradicting the definition of a,.

Next we claim that the sequence (*) splits. This is a

consequence of a general splitting lemma.

Lemma 7.5.9. Let 0+ F —25G 2> H + 0 be an exact sequence
of coherent sheaves on the complex manifold M. Suppose that H is
locally free and that HI(M,Hom(H,F)) = 0, Then the sequence splits.

Proof. We refer to the exercises at the end of §1 for the
definition of Hom(F,G). See also the exercises at the end of §1,
Chapter 6. Since H is locally free the sequence

0 » Hom(H,F) » Hom(H,G) + Hom(H,H) -+ 0

is exact., Taking the cohomology sequence we deduce that

HOM,Hom(H,G)) + HO(M,Hom(H ,H)) =+ O
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is exact. Therefore there exists c: H + G which is mapped to the
identity homomorphiam of H. That is, bc = Id. 0

Returning to the proof of our theorem we see that

k
Hom(F,0(a;)) = F*e0l(a)) = j@z O(ay -ay).
Now a) -a, 2 0 and so 1! (p1(¢) ,Hom(F,0(a,)) = 0. Hence we may apply
the aplitting lemma to deduce that (*) aplits. But then,
k
E T 0@ap)e D O(aj)-
=2
Finally the uniqueness of the sequence a2 ... 28 follows
by observing that the number of ai's equal to m is precisely
dia HO(PH(©) ,E(-m)) . 0

Remark. Much is known about the classification of
holomorphic vector bundles on compact Riemann surfaces. See Gunning
(3], M. Narasimhan [1] and Tjurin [1].

Theorem 7.5.8 does not generaliae to vector bundles over
P"(@), n > 1.

Example 1. TPZ(E) is not a sum of holomorphic line bundles.
Suppose the contrary. Then TPZSGQ ¥ 0(a) 90(b), where we may suppose
a2b. Taking the Euler sequence for TPz(c), we therefore have the

exact sequence
0+0 013 +0(a)e0®) » 0.

Suppose a > 2. Tensoring the Euler sequence by ((-2) and taking the
cohomology sequence of the reaulting ahort exact sequence we find
HO(PZ(G).O(-1)3) = HO(PZ(E).O(a—Z) 90(b-2)), which cannot be since
the first cohomology group is zero, the second non-zero. Therefore,
a,b < 1. Now take the cohomology aequence of the Euler sequence and
count dimenaions of the zero dimenaional groups to derive a contra-
diction. (The same analysis will show that TP"(@) 1s never a direct
sum of line bundles for n 2 2).
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Suppose that £ c P'(C) is a line (that is, £ # PX(0)).
Grothendieck's theorem, together with a similar analysis to that
presented in the example above, shows that

~

1L 5 02) e 0™,

We say that a holomorphic vector bundle E on Pn(G) of rank is wuniform
of splitting type (al,...,ak) if for every complex line £ c Pn(a),

k
EIt = @ 0@
=1
It can be shown that a uniform bundle of rank k < n is a direct sum
of line bundles and that if k = n then it is either a direct sum of
line bundles or of the form TP™(C)(m), TP"(C)*(m) (see Okonek,
Schneider and Spindler (1; pages 70,71D).

However, not every holomorphic vector bundle on P (C) is
uniform, n > 1, and the problem of classification is still open.
Substantial progress has recently been made in the classification
of a class of rank 2 vector bundles over P3(¢) - the so called
ingtanton bundles - which give rise to self dual solutions of the
Yang-Mills field equations. An important feature here is the
appearance of moduli in the classification. For references, together
with an up-to-date survey of the theory of holomorphic vector bundles
on projective space, we refer to the book by Okonek, Schneider and
Spindler [1].

Exercises.

1. Let E be a holomorphic vector bundle on Pn(C) and v ¢ E,,
z € P“(c). Show that there exists s ¢ M*(E) such that s(z) = v.

2, Llet Mc Pn(ﬁ) be algebraic. Show that Serre's Theorems A and
B hold for all coherent sheaves on M (twist with the hyperplane
section bundle restricted to M).

3. Verify that
1. TP"(@) 1s not a sum of line bundles, n > 2.
2, TPn(C) is uniform of splitting type (2,1,...,1), n 2 1.
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(m)(cn+1) - (m+Tj)'

(Hint: It may be useful to recall that dith n

4. Show that Grothendieck's theorem (Theorem 7.5.8) is equivalent
to the following statement about invertible holomorphic matrices:
Regarding P1(¢) as the l-point compactification of ¢, let t > 1 and
set U = {z ¢ plie): 1zl < thu, = {z ¢ pl(@): lz| > 1}. suppose

Me GL(n,A(Ulz)). Then there exist P € GL(n,A(U;)), Q € GL(n,A(U3))
a

such that PMQ is a diagonal matrix with diagonal terms z J, ay e Z.

5. (Koszul complex) Let A be a commutative ring with 1 and for
m21, let Bl,...,Em denote the standard A-module basis of A™ (that
1s E; = (1,0,...,0),...,E = (0,0,...,1)). The A-module APA" has
A-module basis {EJ - EJIA... AEjp: 1sy,<... <3p s n}. Suppose
that f;,...,f € A, set fe (fl,...,fm) e A" and let I denote the
ideal in A generated by fl,....fm. Show

a) We have the Kogzul complex
0+ /AR 2, o ym 3 3 A\ 3,4 AT 0

of A-module homomorphisms, where da = C%a. That is, if
a=aE; ¢ /PAm then

da = a f (-1)1*1¢
J

E, Av..AE, A...AE
1=1 3

3y 3 3p
Show also that 3(AAT) = 1.

b) Let I, = (fl""’fk) denote the ideal in I generated by
£1s+.0,fp . We say that (fl,...,fm) is a regular sequence 1if fk is

not a zero divisor in A/ k=1,...,m

k-1’
Show that if (fl""'fm) is a regular sequence, then the Koszul
complex is exact (Hint: prove by induction on m. See also Griffiths

and Harris [1; pages 688-690]).

Now suppose that Py € @[zo,...,sz is homogeneous of degree
dj’ 1<j<Sm and let p = (pl,...,pm) denote the corresponding
section of E = ((d;)®..,080(d;). Set X = Z(p) c P"(C). Show
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c) If (py»...,p,) 18 a regular sequence in G[zo,...,zn] then
the Koszul complex

O*Amg_*—LAm_lg*L...—a*Alg*-’On + 0y + 0

P (D)
is a locally free resolution of Ox.

(See also Exercise 14, §1, Chapter 6. The assumption on (pl""'Pm)
amounts to saying that X is a complete intersection).

6. Let E be a holomorphic vector bundle on the compact Riemann
surface M. Given d ¢ D(M), we set E(d) = E®[d]. Suppose d,d' ¢ D(M)

k
and that d S d', Set d'-d = .2,, where each p, > 0. Show
& P24 1

a) We have a natural exact sequence
0+ E(d) - E@') +F~+0

where F is the "Manhatten" sheaf whose stalk is zero except at points
X € |d' -d| where we have Fx - Gpiq, q = dim(E).
i

B) 1f we define X(E) = dimH'(M,E) - dimclll(H,E) then
X(E(d)) = qdeg(d) + x(E).

(Hint: The alternating sum of dimensions in an exact sequence

0~ Lo -+ Ll + oo+l > 0 of vector spaces is zero).
c) dinhﬁ(z(d)) 2 qdeg(d) + x(E).
d) E has non-trivial meromorphic sections.

e) 1In case E is a holomorphic line bundle on M, there exists
d ¢ D(M) such that E = [d] and ¢, (E) = deg(d).

£) nlM,Mr) = 0.

7. Let M be a compact Riemann surface. Given d ¢ D(M), set
1(d) = dimgh®(,(dD); 1(d) = dimgh (M,04]). Show that

1(d) - i(d) = deg(d) +1 - g,
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where g = dimEHI(M,O).

(Riemann-Roch formula).
Deduce
a) 1(d) 2 deg(d) + 1 - g (Riemann's inequality).
b) I1f deg(d) 2 g+1, there exists m ¢ M*(M) such that div(m) + d 20.

c) M may be represented as a branched over of Pl(c) with at most
g +1 sheets. In particular, if g = 0, M = Pl(c).

(We remark that g is actually the genus of M. In particular, g is
a topological rather than analytic invariant of M. To see that g is
the genus of M (that is kdimhﬂl(ﬂ,ﬂ)), we note that Serre-duality
implies that Hl(H,O) = HO(H,QI). Now take the cohomology sequence
of the short exact sequence 0 + @ -+ 0 _g:g_>n1 + 0 -~ see Example 23,

§1, Chapter 6).

§6. The Kodaira embedding theorem.

In this section we prove a version of the Kodaira embedding
theorem due to Grauert. The main step in the proof is a cohomology
vanishing theorem for coherent sheaves on a compact complex manifold
admitting a weakly positive vector bundle (for the definition of
weak positivity, see §10, Chapter 5).

First some notation. Suppose that E is a holomorphic vector
bundle on the complex manifold M. We let E(s) denote the s~fold
symmetric tensor product of E (this is just the usual tenmsor product
1f E 1s a line bundle). If F is a coherent sheaf on M, we let F(®) (E)
denote the E-twisted sheaf FOOB(S).

Theorem 7.6.1. (Grauert [1]). Let E be a weakly positive
vector bundle on the compact complex manifold M. Then for any

coherent sheaf F on M, there exists my = o(F) such that

WP F™ () = 0, p21, 2 m,



193.

Proof. Let r: E* » M denote the dual of E. Then E* is weakly
negative and so there exists an s.L.p. neighbourhood D of the zero
gsection of E*, Set ? = *F|D. Then ? is a coherent sheaf on D
(Example 6, §1)., We shall ghow that for N > 0, there exists a
canonical linear injection

N
o 1 HPoLFD ) » w0, D).
s=0
Since Grauert's finiteness theorem implies that HP(D,?) is finite
dimensional, p 2 1, the existence of such an injection certainly
implies that HP(H,F(S)(E)) is zero dimensional for all sufficiently
large s, p 2 1.

Let w denote the zero section of E* and i: M + E* the
canonical inclusion of M on w. Set 6 - 1-105* and note that a has the
natural structure of a sheaf of On—modules (not of finite type).

For 8 2 0, we have a natural OM—morphism

(9)_’5

Xg* E
8 (8)
defined by Xs(fz)(22§vz) - sz:;(vz). zeM, £, E "7, v, e EX.
That is, fz(z) € Ez & (EX)* and so defines a homogeneous
polynomial map of degree s from E; to C. Evaluate £z(z) at points of
the fibre EX. The map Xg is obviously injective. Moreover, if we set

N N
N (s ~
X = @D xg: @E )b
8=0 8=0
it is clear that XN is also injective since the image of each Xg
consists of analytic germs which are homogeneous of degree s in the
fibre coordinates. Furthermore, we can define an On—morphiam
N: 0+ @ E(s) which is a right inverse for XN (that is, ijN = 1d).

s=0
To do this suppose g, € 0 . Then, by Taylor's theorem, we may write

{ £,Py, where £, ¢ Oy . P, ¢ E**(a) ~ s(’). Now define

] (Sz) = (£0Pgs+ e E\Py) G g, is the N-jet of g, along the fibres
of E*). Since 1 ig a biholomorphism, we have induced maps
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N
(s) ~ -1
I:Fe@PE  — F (=(n P e 0,
N 9, w w‘n-l(on)w

I ﬁn

satisfying JNIN = Id, and induced maps on cohomology

N %
wmFo @ ) — ——wPw.F)
8=0 J* w
N
(Exercise 14, §3, Chapter 6). In particular, I* is injective,

N
P,N20. Let r = i-l(nID): D + w and k: w + D denote the inclusion.

Now rk is the identity map on @ and so we have the commutative

diagram
~ 1d ~
#Pw,F) ———uPw,F)
r*
Kk*
HP(p,F)
(see Exercise 15, §3, Chapter 6 and note that k-l'f - Fw' r-lfw = ?).
But therefore r* is injective and so the map
P (8 3
oy = r*If: HW(MFo @ E) - HP(D,F)
s=0
is injective, p 2 0. 0

Suppose that F is a holomorphic line bundle on the compact
complex manifold M and that for each z ¢ M, there exists s ¢ HO(M,E)
such that s(z) # 0. Choose a C-basis 8Qs - 28y for HO(M._E). Then,
as we showed in §9, Chapter 5, s = (so....,sk) defines a holomorphic
map of M in Pk((t). We shall say that F is ample (respectively very
ample) 1if HO(M.E) determines a holomorphic map (respectively
embedding) of M in some projective space. We remark that if F is
ample (respectively, very ample) then so is Fk, k21,

Theorem 7.6.2. (Kodaira embedding theorem). Let M be a
compact complex manifold and suppose that E is a weakly positive
vector bundle on M. Then M admits an embedding in projective space.
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Proof. (Grauert [1]). We shall prove the theorem in case E
is a weakly positive line bundle. The proof in case E is a bundle
of rank greater than 1 is similar except that M gets embedded in a
Grassmann manifold (which, of course, can be embedded in projective

space).

0 k
First we show that there exists kj such that H'(M,E")

determines a holomorphic immersion of M in projective space, k 2 ko.

Fix z € M and let 1: =- Izlz, where Iz is the ideal sheaf of z.

The sheaf 1: is coherent and we have the short exact sequence
2 T
(*)euen 0~ Iz > 0" — J(2z) + 0,

where J(z) is the skyscrapper sheaf suppcrted at z with stalk Oz/m:.
Now T(fz) - (fz(z).dfz(z)). That is, Oz/mi measures the first two
terms in the Taylor expansion of f,. By Theorem 7.5.1, there exists
k(2) such that HI(M,I:OEk) = 0, k2k(z). Tensoring (*) with §k and
taking the cohomology sequence of the short exact sequence we deduce
that

1O, E) T w0(M,3(2) 0 E))

is8 surjective, k 2 k(z). Since HO(M.J(z) ) Ek) ® J(z), we deduce

that HO(M.EF) determines a holomorphic embedding of some open neigh-
bourhood Uz of z in projective space, k 2 k(z) (Uz may be chosen
independently of k 2 k(z). Indeed, a Uz that works for k(z) will work
for k > k(z)). Doing this for every z ¢ M and using the compactness

of M we obtain a finite cover Ul,....Un of M, corresponding integers

k
kl,....kn, such that HO(M,E j) determines a holomorphic embedding of
UJ in projective space. Taking k0 - maxjkj, we see that HO(H,EF)
determines a holomorphic immersion of M in projective space, k 2 ko.
n
Set U= U (Uj xUJ) c M x M, For (x,y) ¢ (MxM)\U, let Ix y denote

i=1 ’
the sheaf of germs of holomorphic functions on M vanishing on {x,y}.

Just as we did above, we find that there exists m(x,y) such that for
m 2 m(x,y) the natural map

1O,E™ + 10, @ (x) 0C(y)) oE™
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is onto. Hence there exists a neighbourhood W of (x,y) in MxM

such that if (x',y') € W, there exists s ¢ HO(H,E?) with s(x') ¢ s(y'),
m 2 m(x,y). Since (MxM) \U is compact, we may find an open cover
Vl,...,Hp of (MxM) \ U and corresponding integers Myseeesmy such

that given (x,y) € "j’ there exists s ¢ HO(M,E?) with s(x) ¢ s(y),

m 2 mj. Now let my = max{ko,ml,...,mp}. Our construction guarantees

that E® is very ample for m 2 my- 0
Remarks .

1. Kodaira's original proof of Theorem 7.6.2 ia rather different
from that of Grauert. Theorem 7.6.1 is replaced by a cohomology
vanishing theorem for cohomology with coefficients in a holomorphic
vector bundle whose curvature satisfies certain positivity
conditions. 1In the construction of the embedding, Kodaira uses
blowing up arguments, in combination with his vanishing theorem,
rather than the twisting arguments we used. The reader may consult
Kodaira and Morrow [1] and Wells [1] for presentations of Kodaira's
original proof. In Chapter 10, we shall prove the cohomology
vanishing theorem ("Kodaira's vanishing theorem'") referred to above.
One important feature of Grauert's proof of the Kodaira embedding
theorem is that it generalises to compact analytic spaces admitting

a weakly positive bundle. For details we refer to Grauert [1].

2. Since P"(¢) admits a weakly positive line bundle (H!), Theorem
7.6.2 implies part B of Theorem 7.5.3 of Serre. But part B easily
implies part A by the usual cohomology sequence arguments and so
we see that Theorem 7.6.1 may be regarded as a generalisation of

Theorems A and B of Serre.

3. Chow's theorem implies that the image of M in PN(C) given by
Kodaira's embedding theorem is an algebraic set. We may actually
embed M in P2m+1(0), m=- dimGM. We indicate briefly why this is so
(for details see Griffiths and Harris [1] and also Hartshorne [1]
for the case of curves). Let I c p“(m) denote the union of all
projective lines which are either chords or tangents to M (that is,
its image in PN(C)). It may be shown that ¥ is an algebraic subset
of PN(G) of dimension € 2m+1. In particular, PN(G) \I will not

be empty provided N > 2m+1. Choose any PN-I(C) c PN(¢) and
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Pe PN(G) \ (Z UPN-1(¢)). Project M into PN-1(¢) from P, Clearly
the projection is an injective immersion - P ¢ I - and so defines an
embedding of M in PN-I(G).

We end with an example.

Example. Let A c ¢" be a lattice and suppose that A admits a
Riemann form. That is, we shall assume that there exists a positive
definite Hermitian form H on @" whose imaginary part is integer valued
on A (see Chapter 4, §4; Chapter 5, §9). We claim that T = e¢"/A is an
abelian variety. We shall prove this by showing that the holomorphic
line bundle L(H,1) on T i; weakly positive and applying Kodaira's
embedding theorem. By Exercise 6, §9, Chapter 5, 6(z) = expnl(z,2),

z e ¢n, determines a smooth nowhere vanishing section of

L(H,1) oL(H,1). Define n: g" x¢ -+ Rby n(z,t) = Itlze(z) and observe
that n induces a smooth map n: L(H,1)* & L(-H,1) + R (n is the
square of the radius function on L(H,1)* associated to the hermitian
metric on L(H,l)* determined by 6). A straightforward computation
shows that L(n)(z,t) is positive definite provided that t # 0. Hence
L(ﬁ) is certainly positive definite off the zero section of L(H,1)*.
Setting D = {v € L(H,1)*: ;(v) < 1}, we see that D is an s.L.p.
neighbourhood of the zero section of L(H,1)* and so L(H,1)* is
weakly negative. Hence L(H,1) is weakly positive.

Exercises.

1. Prove Theorem 7.6.2 in case E is of rank greater than 1.

2., This exercise is a continuation of exercises 6, 7 of §5. Let
M be a compact Riemann surface. Show that if z ¢ M then 1: = [-E.z].
p 2 0, where I, denotes the ideal sheaf of {z}. Suppose that E is a
holomorphic 1line bundle on M. Prove

a) 1f ¢ (E) 2 2g-1, then H!(M,E) = 0.

b) 1f cl(E) 2 2g, then E is ample (see the proof of Theorem
7.6.2).

c) 1If cl(E) 2 2g+1, then E is very ample.

Deduce that every compact Riemann surface is algebraic.
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3. Show that every compact Riemann surface M admits an open
covering by two Stein open sets (Hint: Embed M in Pn(ﬁ). Consider
the intersection of M with two hyperplanes Hl, }lz chosen so that
MnH; nH, = §. Show that {M\H,: 1=1,2} 18 a Stein open cover of M).
Deduce that HP(M,F) = 0, p 2 2, for every coherent sheaf F on M
(see also Grauert and Remmert [1; page 210]).
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Combined Index to Parts I and Il

(Page numbers referring to items in Part I are italicised)

Abelain variety, 159; projective Biholomorphic, 16,18,135

beddi
embedding, 197 Biholomorphic inequivlaence

Algebraic set (projective), 146 of disc and polydisc,
Algebraic manifold, 147 92,138
Almost complex manifold, 26 Bimeromorphic invariant, 52

Alternating tensor, 4 Birational invariant, 185

Blowing-up,177, with non-
Ampl tor bundle, 194,197 ISR
ple vector bundle, 19 singular centre, 179

Blowing down, 185
Bounded domain, 163
Anal;;ic extension of spread manifold, Branch point, 20

Calabi-Eckmann manifold, 165

Analytic continuation, 3,49,54,89

Analytic equivalence, 135

Analytic function of one variable, 1;

of several variables, 44 Canonical bundle, 151,45; of
Analytic function on analytic set, 19 projective space 45; of

hypersurface, 51
Analytic h f
nalytic hypersurface, 167 Canonical resolution of sheaf, 98
Analytic map, 135 Cartan theorems A and B, 140,

Analytic polyhedron, 61,69,145 155,165

Analytic sheaf, 127; of finite type, Cartan-Thullen theorem, 69
128

Analyti duced 85;
na {un:egﬁzzs)(rgﬁuc ), 85 Cauchy's inequalities, 4,48;
’ see also 42,50

Cartier divisor, 173

Analyti bset
nalytic subset, 51,137 Cauchy's integral formula,38;

Anti-holomorphic vector bundle, 27; for polydiscs, 46

t t t t) bundle, 2
angent (cotangent) bundle, 29 Cauchy-Riemann equations, 1
Apell and Humbert theorem, 55 o
P and Humber ™ Cayley-Plucker-Grassmann
Approximation of analytic functions on coordinates, 149

Stein manifold, 154; of sections
of coherent sheaf over Stein
manifold, 154 Centre (of blowing up), 177

Atlas (complex analytic), 17,134 Chart, 16

v
Cech cohomology group, 113

Chern class (first),117,122,123,
125; of hyperplane section
bundle, 119; of holomorphic

Basis for complexification of complex
vector space, 23

Base locus (of linear system), 51 line bundle on P"(C), 185
Bergman kernel function, 89; of Chow's theorem, 148,182

polydisc, 91; of Euclidean disc,
91; Levi form of, 92; of complex Classical domain, 139
manifold, 64 Closed form, 11



Closure of modules theorem, 133,153

Coboundary operator (in dech theory),

Cocycle condition, 12,26

Coherence of jdeal sheaf, 137;
inverse image, 137; direct
image, 137

Coherent sheaf, 132
Cohomology, sheaf, 99; singular, 103

Cohomology of O(m) sheaves on P"(Q),
175

Commutative vector space algebra, 2

Compact linear map between Fréchet
spaces, 160

Complex differential form, 28
Complex Lie group, 139,151

Complex line bundle,30; on
differential manifold, 116

Complex manifold, 134; analytic
structure, 13§

Complex multiplication, 162

Complex projective space, 145

Complex (r,s)-vector/form, 22

Complex structure (on vector space),
29,17; conjugate structure, 29

Complex structure on vector bundle,

26
Complex submanifold, 135

Complex tangent (cotangent)
bundle, 28

Complex torus, 151,53; embedding
of, 197

Complexification, 15; of linear
map, 19; of complex vector
bundle, 26

Composite mapping formula, 31,43

Conjugate vector space, 29,17; dual
space, 29,18; complex vector
bundle, 227

Conjugation, 16,20
Congtant sheaf, 10

Contraction, 5,23; compoistion 7;
of sections of vector bundle, 11

205,

Convex hull (closed), 62
Convexity, 74; strict, 76

Cotangent bundle, 28,28:; holo~
morphic, anti-holomorphic.
31,30

Cousin doamins, 93,94,114,115

Cousin problems 93,94,114,1165,
173,41,78,108,141

Cousin problem on polydiscs, 41

Cubic curve, 147,158
d (exterior differentiation), 11;
as morphism of sheaves, 74,75

Defining function of domain in
complex manifold, 60

Deformation of complex structure,
154

Degree of divisor, 22

Degree of holomorphic line
bundle, 121,122,185

Derivation, 12
Derivative of analytic map, 44
Desingularization, 179,181

Differential form, real, 1l1;
complex, 28

Discriminant locus, 116
Distinguished boundary, 45
Direct image sheaf, 82,88,126
Direct sum of sheaves, 18

Divisor, 8,179; Cartier, 173;
Weil, 172

class map 33,174,47
group, 8,46
in normal crossings,

Divisor
Divisor

Divisor
183

Divisor of meromorphic function
of one variable, 8; of
several variables, 17; on
complex manifold, 47

Divisor sheaf, 18

Divisors on compact complex
manifolds,172,173,46;
complex projective space,
175; Riemann surface, 127



Divisors, linear equivalence, 47;
linear system of, 50

Dolbeault complex, 76,81,105,139
Dolbeault isomorphism, 105,106
Dolbeault-Grothendieck lemma, 38
Domain of existence, 66

Domain of holomorphy, 58,90
Doubly periodic function, 155
Dual pairing, 4

Dual vector bundle, 27

3-operator, 32,34; for holomorphic
vector bundle vslued forms,
36; as morphism of sheaves,
74,76,81

Effective divisor, 49
Elliptic function, 155,56

Embedded resolution of singular-
ities, 183,184

Embedding of Stein manifold, 143:
of complex l-dimensional
tori, 158; of compact
Riemann surface, 197; of
complex tori, 197

Envelope of holomorphy, 90
Espace étalé, 12

Essential singularity, §
Euclidean disc, 45

Euler sequence, 44,45; Euler
vector field, 44

Exact form, 11

Exactness of Dolbeault complex,
76; of de Rham complex, 16

Exactness of sheaf sequence, 715

Exceptional curve of first
kind, 185

Exceptional variety, 177
Exhaustion function, 86,62
Exotic complex structure, 166
Exponential sequence, 116,117

Exterior algebra of vector space, 2;
of complexification of complex
vector space, 22

206.

Exterior differentiation, 11,28

Fine resolution, 98
Fine sheaf, 97

First Chern class, 177; see
also under Chern class

Flabby sheaf, 97,125

Flag manifold, 150
Fractional power series, 125
Fréchet space, 159

Fréchet sheaf, 163

Free resolution, 126

Free sheaf of modules, 80

Fundamental region (for SL(2,2)),
1583

Genus, 19,192
Geometric genus, 52

Germ of function, 99; set, 118;
section (of sheaf), 67

Graded vector space, 1; algebra,
2

Grassmann manifold, 148;
coordinates, 149

Grauert finiteness theorem for
pseudoconvex domains, 168

Grauert theorem on holomorphic
convexivity of s.L.p.
domains, 171

Grauert vanishing theorem for
weakly positive vector
bundles, 192

Grothendieck splitting theorem
for holomorphic vector
bundles on P-(C), 186,190

H-pseudoconvex, 87

Hartogs figure, 55; generalised,
85

Hartogs theorem on extension of
analytic functions, 53,57;
geparate analyticity, 45;
singularities of
analytic functions, 53



Hermitian form, 58; on complex
manifold, 59,119

Hessian, 73
Hilbert Syzygy theorem, 126
Hodge conjecture, 124

Holomorphic function: see under

Analytic function

Holomorphic convexivity, 62; of
s.L.p. domain, 171

Holomorphic line bundle, 32; on
projective space, group
structure, 185; on complex
torus, 53

Holomorphic tangent (cotangent)
bundle, 29

Holomorphic tangent apace to
boundary of s.L.p. domain, 60

Holomorphic vector bundle, 26;80;
on P*(C), 185

Holomorphic vector bundles on P™(C),
univeraal bundle, 42; hyperplane
section bundle, 43; Euler
aequence, 44; exiatence of
non-trivial meromorphic
aections, 182

Holomorphically complete, 86,62
Homogeneous coordinatea, 146
Homogeneoua domain, 139

Homomorphiam of aheaves: aee under
Sheaf morphism

Hopf fibration, 146

Hopf manifold, 164; surface, 164
Hopf O-process, 177

Hyperelliptic curve, 159
Hyperplane in projective apace, 147

Hyperplane aection bundle on
projective apace, 43; sectiona
of 43; Chern class, 119,185

Hyperplane section bundle of
submanifold of projective
apace, 46

Hypersurface, 167; in normal
crossings, 183; of degree d,
172; in Stein manifold, 141,
142
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Ideal presheaf (of analytic
set), 67

Instanton bundle, 189
Integration (of forms), 12
Interior product, 5

Inverse function theorem, 44
Inverse image sheaf, 81,82,87,88

Irreducible analytic set, 170;
components, 171; domain,
140; element of ring, 106;
germ, 107,122; Weleratraas
polynomial, 107

Isasawa manifold, 167
Iaomorphism of sheaves: See
under Sheaf morphism

Jacobi identity, 13

Jumping of complex structure, 164

Kernel function: See under
Bergman

Kodaira embedding theorem, 194

Koszul complex, 88,142,143,190

L.p. domain, 79,61
Lattice, 151

Laurent series in one variable,
3; in several variables, 49

Legendre's relation, 55
Length (of resolution), 126
Leray cover, 111

Leray's theorem, 13,109

Levi form, 77; on complex
manifold, 59

Levi pseudoconvex, 79,61
Levi'a problem, 82,172
Levi theorem, 80

Lie algebra of vector fields on
complex manifold, 32

Lie bracket, 12,28
Lie derivative, 12,13,28

Line bundle (complex), 30;
holomorphic, 32; real, 31



Linear equivlaence of divisors,
37,417

Linear system of divisors, 50
Local isomorphism of sheaves, 80,85
Local models, 85

Locally free resolution of coherent
sheaves on P"(C),183

Locally free sheaf, 80

Maximum Principle, 4,49

Meromorphic function of one vsriable,
5; of several variables, 33

Meromorphic function on complex
manifold, 136; on complex torus,
155,56; on Riemann surface,
17,192

Meromorphic section of vector bundle,
33,47; on P"(C), 182

Minimal model, 185
Mittag-Leffler theorem, 10
Moduli space, 154

Moishezon manifold, 186
Monodromy theorem, 4

Monoidal transform, 177
Montel's theorem, 39,48
Morphism of spread manifolds, 89

Morphism of sheaves: See under

Sheaf morphism
Multi-index notation, 46
Nakayama's Lemma, 128
Normal crossings, 183
Normal exhaustion, 66,70

Normalised analytic function, 104;
simultaneous normalisation, 104

Nullstellensatz, 112; for principal
ideals, 123

Oka
Oka

principle, 143

presheaf, 66; sheaf, 69;
sheaf of analytic set, 19

Oka theorem, 129
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Open mapping theorem for
analytic maps, 4,49

Open mapping theorem for Fréchet
spaces, 159

Order (of pole, zero), 7,17,33
Orientable manifold, 136,12
Osgood's theorem, 62

p~cochain, 107
p-cocycle, coboundary, 107
pth. &ech cohomology group, 113

pth. cohomology group of U
with values in F, 107

pth. sheaf cohomology group, 99

Partition of unity, 71; of sheaf,
97

Period parallelogram, 155
Picard variety, 36,124
Plurigenera, 33

Plurisubharmonic, 85,62;
exhaustion function, 87,62;
strict, 85,62

Poincaré theorem, 138
Pole, 5

Pole set of meromorphic function
of one variable, 7;
meromorphic function on
Riemann surface, 17;
several variables, 114

Polydisc, 45
Positive divisor, 49

Power series in one variable,2 ;
in several variables, 47

Power series ring, 98
Presheaf, 65,72

Presheaf cokernel, image, kernel,

Presheaf of continuous C-valued
[-valued functions, 66;
C*(C™ functions 66; analy-
tic functions, 66;
meromorphic functions, 66;
ideals, 67; Ox-modules 67;
holomorphic sections of
holomorphic vector bundle, 61



Pregsheaf exactness, 75
Presheaf morphism, 73

Projective embedding of complex
torus, 158,197; compact
Riemann surface, 197

Projective resolution: See under
Resolutton (projective)

Projective space (complex), 145:
algebraic set, 146

Proper discontinuous action, 162
Proper map, 138

Property (R), 146,149,151
Property (S), 61

Pseudoconvex, 85; H-, 87; Levi,
79; strictly Levi, 79;
q-, 60, strictly q-, 60

Puiseaux series, 125

Pull back of vector bundle, 37;
of divisor 37; of sheaf, 81,
82,87,88

q-complete manifold, 62,63

q-plurisubharmonic function, 62

q-pseudoconvex manifold, 60,63

Quadratic transform, 177

Quotient of sheaves, 18

Radical (of ideal), 120
Rado's theorem, 52

Rational function, 148; on
projective space, 175

Reducible analytic set, 170
Refinement map, 112

Regular point of analytic set, 168

Reinhardt domain, 50
Relatively prime germs, 112

Reproducing property of kernel
function, 91

Resolution of module, 126

Resolution (projective) of coherent

sheaf, 142,145,146,183
Resolution of sheaf, 98
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Resolution of singularities, 183
Restriction of sheaf, 81

de Rham cohomology group, 12,105
de Rham complex 75,104

Riemann removable singularities
theorem in one variable, 4;
in several variables, §1,145

Riemann domain, 19; sphere, 18;
surface, 16

Riemann form, 160
Riemann-Roch theorem, 35,191
Riemann's inequality, 35,192

Runge approximation theorem,
40,42

Runge domain, 95,139

s.L.p. domain 79,61

Schubert calculus, 150

Schwartz lemma, §

Schwartz finiteness theorem, 160

Sections of holomorphic vector
bundle, finiteness theorem,
41

Section of vector bundle, 24

Section of sheaf defined over
closed set, 83

Self-conjugate basis, 24

Segre embedding, 148

Serre duality theorem, 184
Serre theorems A and B, 178,189

Sheaf cohomology group, 99;
relative to open cover, 107

Sheaf cokernel, image, kernel,
77; quotient, 18
Sheaf exact sequence, 75,77

Sheaf direct sum, 79, tensor
product, 29

Sheaf homomorphicm, 73;
isomorphism, 73; morphism,
73; local isomorphism, 80

Sheaf of germs of continuous

C-valued functions, 69;
C® @-valued functions, 69;



analytic functions, 69;

locally constant functions, 70;
meromorphic functions, 115,135,70;

divisors, 78; sections of
holomorphic vector bundle, 70

Sheaf of O-modules, 70
Sheaf of relations, 129
Sheafification, 68

Short exact sequence of sheaves, 15
Siegel domain (of second kind), 141

Singular cohomology, 103

Singular point of analytic set, 168

Singularity, 20
Soft sheaf, 95

Spreading of domain in ¢", 89; of
Riemann surface, 19

Stalk (of sheaf), 68

Stein cover of compact Riemann

surface, 198
Stein manifold, 142; embedding
in €7, 143
Stieltjeas-Vitali theorem: See
under Montel

Stokes' theorem, 12
Strict transform, 180
Strictly Levi pseudoconvex, 79,61

Strictly pseudoconvex manifold, 173

Subharmonic function, 85
Subpresheaf, 70

Subsheaf, 70

Support of section of sheaf, 87

Support of sheaf, 87; of coherent
sheaf, 137

Symmetric domain, 139

Symmetric tensor algebra of
vector space, 2

Syzygy theorem, 126
Tangent bundle, real, 28;

holomorphic, 31,29; anti-
holomorphic, 31,29

Tensor algebra of vector space, 2

Tensor product of sheaves 79

210.

Theta function, 53

Topologization of sheaf, 68;
sections of coherent
sheaf, 152,161

Topology on Oy, 71

Torsion of almost complex
structure, 32; vanishes 1if
and only 1if complex
structure, 33

Torus: See under Complex torus

Total space (of vector
bundle), 24

Trace, 5,11
Transition function, 25
Transpose (of linear map), 27,29

Trivial extension of sheaf 87,
126

Trivial theta function, 54
Trivial vector bundle, 24,10

Trivialisation of vector
bundle, 24

Twisted sheaves on projective
space, 177

Uniform holomorphic vector
bundle, 189

Uniformization theorem, 18,163

Uniqueness of analytic
continuation, 3,49

Universal bundle, 151; on
projective space, 42,61
V-Hermitian form, 140

Vector bundle, complex, 28;
conjugate (dual), 30;
dual, 27; real, 24

Vector bundle isomorphism, 263;
map, 26; pull-back, 27

Vector bundles, classifying
space, 151; exterior product,
28; symmetric product, 28;
tensor product, 28;

Veronese surface, 57

Very ample vector bundle, 194
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Vitali's theorem: see under
Montel
Weak continuity principle, 87

Weakly negative (positive)
vector bundle, 61,62

Weierstrass Division theorem, 101;
Preparation theorem, 1095

Weierstrass elliptic function, 156
Weierstrass polynomial, 105
Weierstrass Theorem, 12
Weierstrass zeta function, 55
Weierstrass o-function, 55

Weil divisor, 172

Zero set of meromorphic function

of one variable, 7; of
several variables, 114

Zero-complete (0O-complete), 86,62
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